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Introduction

The main purpose of this paper is to inform readers of all backgrounds how
linear regression can be used to model the relationship between a quantitative
dependent variable and quantitative independent variable(s). What we mean
by quantitative is that the variables contain real numbers. To be more precise,
they are column vectors (a column in a data set) that contain n observations.

For example, the variable ~X =
[
2.300, 4.000, 3.415, ..., 6.001

]T
contains n obser-

vations that are real numbers. This variable is quantitative and has continuous
elements. Another purpose of this paper is to present how data in quantita-
tive variables can be transformed such that learning from the data using linear
regression modeling is appropriate. The final purpose of this paper is to dis-
cuss various linear regression methods, model assessment, results of simulation,
limitations of linear regression modeling, and present situations when modeling
assumptions do not hold.

Explanation of the Data Source, Variables, and
Modeling Objectives

The data set titled Auto we use to create a new data set can found at
http://faculty.marshall.usc.edu/gareth-james/ISL/data.html as a CSV file. The
original data set, found on the website, contains information on cars collected
by David Donoho and Ernesto Ramos and used in the 1983 American Sta-
tistical Association Exposition. The Auto data set contains 392 observations
(5 were deleted due to missingness) on cars manufactured between 1970 and
1982. We use the information contained in this data set to create and analyze
a new data set in this paper called ML.Auto which is a CSV file available to
download on the Wright Analytics website along with a data dictionary titled
Data.Dictionary.ML.Auto.

As discussed in An Overview of Linear Regression Modeling, we consider
linear regression models to be flexible in the sense that they have been used
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to describe phenomena in various fields. Flexibility is not declared about the
functional form of the model itself. In this paper, we choose to analyze the
information about these cars using linear regression. Our goal is to use linear
regression models to explain how certain characteristics of these types of cars
affect their miles per gallon rating. For example, the impact of a vehicle’s horse-
power, number of cylinders in the engine, or origin of the car on the vehicle’s
mpg rating. Finally, we seek out the linear regression models that adequately
explain as much of a vehicle’s miles per gallon as a function of a vehicle’s char-
acteristic(s). Not the one and only “best” linear regression model.

Simple Linear Regression

Intuition tells us that as the horsepower of a vehicle’s engine increases its
miles per gallon rating should decrease. One question we seek to answer is,
“how does the horsepower of a vehicle’s engine impact the miles per gallon that
vehicle gets in general?” In other words, we want to quantify the relationship
between the miles per gallon a vehicle gets given the horsepower of a vehicles
engine. We may be able to quantify the relationship between these two variables
if the relationship between the variables is linear using a linear regression model.
The conditional mean function, or simple linear regression model we assume is

E[Y |X] = β0 + β1X + ε (1)

for a car that has an engine with X horsepower. This equation says that for the
entire population of cars that have an engine with X horsepower (manufactured
in America, Europe, or Japan) the expected miles per gallon that this type of
car will get is β0+β1X+ε miles per gallon. A histogram of the variable appears
below.
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We can see that the data is somewhat skewed to the right (the right-hand tail
of the density curve is longer than the left-hand tail) of the mean of the variable
mpg. So the distribution of mpg does not appear to be exactly normal. The
scatterplot of mpg vs. horsepower can be found below.
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It is easy to see that the linearity assumption between miles per gallon and
engine horsepower is violated. However, we train the learning method on all
of the data to see if other linear regression modeling assumptions hold. We
do this to illustrate issues in regression diagnostic plots. We use the statistical
computing R program to estimate the model parameters and include the R
regression output of mpg regressed on horsepower of the engine below.

Call:

lm(formula = mpg ~ horsepower.10s)

Residuals:

Min 1Q Median 3Q Max

-13.5710 -3.2592 -0.3435 2.7630 16.9240

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.93586 0.71750 55.66 <2e-16 ***

horsepower.10s -1.57845 0.06446 -24.49 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.906 on 390 degrees of freedom
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Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049

F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16

R returns the estimated model

E[Y |X] = 39.94− 1.578X (2)

. We can see that a car’s miles per gallon rating may depend linearly on the
horsepower of the vehicles engine. This is because of the small p-values obtained
from the t-test for slope as well as the small p-value from the F-test for model
significance.

Next, we interpret the dependency between the miles per gallon of a car that
has an engine with X horsepower. The sign of the simple linear regression model
slope is negative. Therefore, this means that we have evidence of an inverse
relationship between the miles per gallon of the vehicle and the horsepower of
its engine. This is because we have strong evidence that the slope of the true
regression line is significantly different from zero. So for every unit increase in X
(an increase of 10 units of horsepower), we can expect that the miles per gallon
of the vehicle will decrease by 1.580 mpg. Or, if there is a unit decrease in X
(a decrease of 10 units of horsepower), the mpg of the vehicle will increase by
about 1.580 mpg. Note, we also have strong evidence that the intercept of the
true regression line is significantly different from zero. However, in this case, the
intercept doesn’t have a practical interpretation because it is the mpg of a car
that has a zero horsepower engine. Does this inference about the slope make
sense? We need a way to see if the relationship between mpg and horsepower is
truly linear and if the residuals have a constant variance. To do this we produce
a residual plot and normal Q-Q plot which are often referred to as regression
model diagnostic plots below.
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The residual plot indicates that the residuals do not display constant variance.
There is a strong functional form in this estimated regression model’s residuals
which suggests a need to transform data in some of the variables. Further, there
is a strong departure from normality in the errors which also suggests the need
to transform some of the data. Since this is the case, we should be careful with
any inferential or predictive conclusions made using this model.

Transformations of a Single Variable

We do know that some of the linear regression modeling assumptions were
not met when we analyzed diagnostic plots for the model in the previous section.
We saw in the previous section that there is a strong functional form in the
data when we analyzed the scatterplot of vehicle miles per gallon as a function
of engine horsepower. Does this mean that the relationship between mpg and
horsepower is nonlinear? Does it mean that modeling the dependency of mpg on
horsepower with a simple linear regression model is incorrect? Not necessarily.
We say not necessarily due to the idea of sampling uncertainty. In other words,
if we were to draw another random sample from the population of these types of
cars, construct the same variables which contain measurements of horsepower
and mpg ratings, and draw a scatter plot of mpg as a function of horsepower,
the data could display linearity between the untransformed variables. In other
words, we are not sure if the sample used to train the simple linear regression
model was representative of all vehicles manufactured in America, Europe, and
Japan (the population of these types of cars).

It is important to note that we are not out to seek the one and only “best”
model, or f, that can be used to explain mpg for these types of cars. We
are seeking a robust model, explains a significant proportion of mpg for these
types of vehicles, and is not overly complex and easy to interpret. Since we have
somewhat encountered a barrier in the previous section, we use some alternative
modeling approaches in this section in hopes to obtain such a model. Since we
noted a functional form in the scatterplot of mpg as a function of horsepower
we first consider modeling mpg with a polynomial regression model which is a
special case of multiple linear regression. The form of such a model of degree k
is

E[Y |X,X2, ..., Xk] = β0 + β1X + β2X
2 + ...+ βkX

k + ε (3)

. We will not just pick the degree of the polynomial out of a hat and estimate the
polynomial regression model. We will compare results of LOOCV (Leave-One-
Out Cross-Validation) and K-Fold Cross-Validation to estimate test mean square
errors. Then estimate the polynomial using the data whose degree minimizes
the estimated test mean square error.

> set.seed(1)

> # LOOCV #
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> library(boot)

> LOOCV.Error <- rep(x = 0, times = 10)

> for ( i in 1:10){

+ LOOCV.poly <- glm(mpg ~ poly(horsepower.10s, degree = i), data = ML.Auto )

+ LOOCV.Error[i] <- cv.glm(data = ML.Auto, glmfit = LOOCV.poly)$delta[1]

+

+ }

> LOOCV.Error

[1] 24.23151 19.24821 19.33498 19.42443 19.03321 18.97864 18.83305 18.96115

[9] 19.06863 19.49093

> # 10-fold cross validation #

> set.seed(18)

> Five.fold.error <- rep(x = 0, times = 10)

> for (j in 1:10){

+ K.fold.poly <- glm(mpg ~ poly(horsepower.10s, degree = j), data = ML.Auto)

+ Five.fold.error[j] <- cv.glm(data = ML.Auto, glmfit = K.fold.poly, K = 10)$delta[1]

+ }

> Five.fold.error

[1] 24.17665 19.22218 19.42568 19.47748 19.03218 19.11929 18.70025 18.87910

[9] 19.38766 21.15394

Looking at the LOOCV results we choose the fifth degree polynomial which
sacrifices a little bit of accuracy but preserves simplicity as compared to the
a seventh degree polynomial option which has the lowest estimated test MSE.
Further, the estimated test MSE for this model is 19.03321 mpg2 or 4.4mpg
on average. The 10-fold cross-validation results suggest using a seventh degree
polynomial. Its test MSE is 18.70960 mpg2 or 4.32 mpg on average. Although,
the fifth degree polynomial test MSE is not much larger. It is 18.86876 mpg2

or 4.34 mpg on average. Since the discrepancy is small (using both validation
methods) we choose to fit a fifth degree polynomial to reduce model complexity.

Call:

lm(formula = mpg ~ poly(horsepower.10s, degree = 5), data = ML.Auto)

Residuals:

Min 1Q Median 3Q Max

-15.4326 -2.5285 -0.2925 2.1750 15.9730

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.4459 0.2185 107.308 < 2e-16 ***

poly(horsepower.10s, degree = 5)1 -120.1377 4.3259 -27.772 < 2e-16 ***

poly(horsepower.10s, degree = 5)2 44.0895 4.3259 10.192 < 2e-16 ***

poly(horsepower.10s, degree = 5)3 -3.9488 4.3259 -0.913 0.36190
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poly(horsepower.10s, degree = 5)4 -5.1878 4.3259 -1.199 0.23117

poly(horsepower.10s, degree = 5)5 13.2722 4.3259 3.068 0.00231 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.326 on 386 degrees of freedom

Multiple R-squared: 0.6967, Adjusted R-squared: 0.6928

F-statistic: 177.4 on 5 and 386 DF, p-value: < 2.2e-16
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Even though some of the powers appear to be insignificant, we keep them in the
model to obey a concept called model hierarchy that applies to fitted multiple
linear regression models. The estimated model is

E[Y |X,X2, ..., X5] = 23.4− 120.1X + 44.1X2 − 3.9X3 − 5.2X4 + 13.3X5 (4)

. If one plots and analyzes a normal QQ-plot and residual plot you will see that
the errors do not have a constant variance and they present a strong departure
from normality. Our search continues!

Another approach is to transform the variables in a data set to obtain linear-
ity between a dependent variable and one or more independent variables rather
than trying to capture curvature with a polynomial. More formally this is called
transforming for linearity. Transformation methods do have formal names and
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criteria that have been constructed by statisticians. To discuss them is beyond
the scope of this paper. However, we will present the idea of log transforms on
variables which are common transforms for linearity. The scatter plot of the
log-log transform (log base e) is shown below.
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We see that the relationship is linear. Therefore, it is acceptable to conclude
that the population line has the form

ln(E[Y |X]) = β0 + β1 ln(X) + ε (5)

in the transformed scale of the varibles. Where β1 in (1) is not the same as
β1 in (5) due to the transform. In other words, the transformed data produces
different estimates for both β0 and β1.

Call:

lm(formula = log(mpg) ~ log(horsepower.10s))

Residuals:

Min 1Q Median 3Q Max

-0.65230 -0.12176 0.00788 0.11631 0.63730

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.02222 0.06102 82.30 <2e-16 ***
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log(horsepower.10s) -0.84185 0.02641 -31.88 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1793 on 390 degrees of freedom

Multiple R-squared: 0.7227, Adjusted R-squared: 0.722

F-statistic: 1016 on 1 and 390 DF, p-value: < 2.2e-16

The model diagnostic plots above show that the errors exhibit constant vari-
ance, are independent, and follow a normal distribution. Is this the one and
only “best” model? No. Probably not. Also, when model error diagnostic plots
show patterns such as these, any statistical inferences made about the impact
of the independent variable(s) on a dependent variable are valid only if there
is a significant relationship between the dependent variable and significant in-
dependent variable(s). In other words, such models are robust and predictions
and inference made using these models are often accurate. However, if any of
the independent variables are not significant, it does not make much sense to
interpret their slopes. This is because we cannot rule out the fact that the pop-
ulation slope may be zero. We next analyze and interpret the log-log regression
model.

The estimated log-log regression model is

ln(E[Y |X]) = 5.02− 0.84 ln(X) (6)

The LOOCV estimated test MSE is found to be 1.03 mpg as well as the ten-fold
cross-validation estimated test MSE. So the average error that this model will
make when predicting the gas mileage of a car whose mpg rating was not in the
training set is this value. The typical error the model makes on the training
data is exp(0.1793) = 1.20 mpg. The R-Squared of the model is 72%. So overall,
this model is fairly effective. The intercept has no practical interpretation. This
is because when X = 0 we have ln(E[Y | X]) = ∞. Before we interpret the
estimated slope of the log-log regression model, we first bootstrap the coefficient
estimate and its standard error. This will help any doubts about the value of
β̂1 obtained from the ordinary least square estimate of β1 in the log-log model.

Below we show R code how we boot strap β̂1. We have

> # Define a function that estimates the log-log slope estimate #

> log.frame <- data.frame(mpg = log(mpg), horsepower.10s = log(horsepower.10s))

> beta1.hat <- function(data, index){

+ X <- data$horsepower.10s[index]

+ Y <- data$mpg[index]

+ return ( sum( (X - mean(X)) * (Y - mean(Y)) )/ sum((X - mean(X)) ^2) )

+ }

> beta1.hat(data = log.frame, index = 1:392)

[1] -0.841847
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> # Create a bootstrap sample and recalculate the estimate #

>

> set.seed(12)

> beta1.hat( data = log.frame , index = sample(x = 392, size = 392, replace = T))

[1] -0.884816

> # Estimate the parameter B = 1000 times using B = 1000 bootstrap samples and #

> # Average the these values in order to reduce the variance of the estimate #

>

> boot(data = log.frame, statistic = beta1.hat, R = 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = log.frame, statistic = beta1.hat, R = 1000)

Bootstrap Statistics :

original bias std. error

t1* -0.841847 0.001052799 0.02755081

>

We next do the same for the model intercept. Although it has no practical
interpretation, we simply include it to fit the model to the data.

> # Create a function that calculates the estimate of the log-log model slope #

> beta0.hat <- function(data, index){

+ X_0 <- data$horsepower.10s[index]

+ Y_0 <- data$mpg[index]

+ return(mean(Y_0) - (-0.841847)*mean(X_0))

+ }

> beta0.hat(data = log.frame, index = 1:392)

[1] 5.022225

> # Recalculate the estimate of the log-log model slope with a bootstrap sample #

>

> set.seed(10)

> beta0.hat(data = log.frame, index = sample(x = 392, size = 392, replace = T))

[1] 5.006397

> # Estimate the slope B = 1000 times with B = 1000 bootstrap samples #

> # and average them reducing the variability of the estimate #

>

> boot(data = log.frame, statistic = beta0.hat, R = 1000)
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ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = log.frame, statistic = beta0.hat, R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 5.022225 -0.0002294325 0.009121353

We have obtained the desired bootstrapped model parameter estimates. Since
this is a log-log regression model, the interpretation of β̂1 is for every percent
increase in horsepower of a vehicle engine we expect that the vehicle’s mpg will
decrease by 0.8418 % that has that engine. This parameter is called the elastic
impact of engine horsepower on mpg ratings of vehicles manufactured in Amer-
ica, Europe, or Japan in this particular application. The code was included to
show the reader how to bootstrap two different parameter estimates which are
also statistics. In fact, bootstrap simulations can be applied to any statistic.
To wrap up this section, we use our model to make a prediction, produce a
confidence interval about that prediction, an estimation interval, and produce
plots of our model fitted to the data.

The minimum horsepower in the data set is 46 and the maximum horsepower
is 230. Let’s estimate the mpg of one of these types of cars that has a 175
horsepower engine. The fitted value and 95% confidence and prediction intervals
are

1

13.63568

fit lwr upr

1 13.63568 13.16879 14.11912

fit lwr upr

1 13.63568 9.56845 19.43175

. The fitted value or point estimate means that given X = 175 we expect
that a car that has this engine to get 13.6 miles per gallon. Due to random
chance (driving conditions such as city, highway, etc.), at minimum the miles
per gallon the vehicle will get is 9.6 mpg and at maximum we expect it to get
19.4 mpg. This is the interpretation of the fitted value and prediction interval
for an individual car based only on horsepower. That is a particular model and
make. The 95% confidence interval can be interpreted as the following: we are
95% sure that all 175 horsepower engines used in these types of automobiles
will produce an automobile mpg rating of 13.2 mpg at minimum, 14.1 mpg at
maximum, and 13.6 mpg on average. The plot of the model with bootstrapped
parameter estimates and standard errors can be found below.
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Multiple Linear Regression

In the previous section, we uncovered the log-log model that was found to
be effective. In this section, we seek a model where the modeling assumptions
are met and has a higher R-Squared value. One way that we could find a more
effective model is to consider modeling the mpg of these types of vehicles with a
multiple linear regression model. Additionally, the dependent variable that we
want to regress on other variables should follow a normal distribution. One can
show that transforming the mpg data with a ln function forces the distribution
of mpg to become approximately normal (this may not always work. Sometimes
different transforms may be needed). Since this is the case, we model ln(mpg)
in this section with a multiple linear regression model.

Given the application, intuition tells us that other factors than an engine’s
horsepower should affect a vehicle’s mpg rating. For example, cars manufactured
in America are notorious for having worse mpg ratings compared to vehicles
manufactured by foreign companies. Additionally, things like increases in weight
may require engine horsepower to increase so a vehicle can quickly obtain and
maintain safe traveling speeds. Finally, one may hypothesize that the number
of cylinders an engine has should also affect a vehicle’s mpg rating. Suppose
also we consider using the origin of the car as a factor that should affect the

15



variable mpg. Finally, the weight of the vehicle as another variable. A possible
multiple linear regression model is

ln(E[Y | ~X]) = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X4X5 + ε (7)

where X1, X2 and X3 are binary valued variables better know as dummy vari-
ables. The coding scheme of the dummy variables is as follows: X1 = 1 if the
car was manufactured in America or X1 = 0 if it was not. X2 = 1 if the car
was manufactured in Europe or X2 = 0 if it was not. X3 = 1 if the cars engine
has four cylinders X3 = 0 if the engine has a different number of cylinders. β4
is the slope for horsepower (X). β5 is the slope for weight (X5). β6 is the slope
for the interaction of X4 and X5. We can rewrite (7) as



β0 + β4X4 + β5X5 + β6X4X5 + ε

β0 + β3 + β4X4 + β5X5 + β6X4X5 + ε

β0 + β1 + β4X4 + β5X5 + β6X4X5 + ε

β0 + β1 + β3 + β4X4 + β5X5 + β6X4X5 + ε

β0 + β2 + β4X4 + β5X5 + β6X4X5 + ε

β0 + β2 + β3 + β4X4 + β5X5 + β6X4X5 + ε

(8)

But before estimating the model one should check for linearity between the
dependent variable and all of the continuous predictors with scatter plots or a
scatter plot matrix which is shown below.
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The first row of the scatterplot matrix shows that the relationship between the
natural log transform of mpg (the dependent variable) and horsepower, weight,
and interaction of weight and horsepower (all of the continuous independent
variables) is linear. So these results show that the linearity assumption is satis-
fied. The estimated model is

Call:

lm(formula = log(mpg) ~ American.Dummy + European.Dummy + X4.cylinders.dummy +

horsepower.10s + weight.1000s + horsepower.10s:weight.1000s)

Residuals:

Min 1Q Median 3Q Max

-0.37481 -0.09360 -0.01174 0.08909 0.57272

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.111994 0.124351 33.068 < 2e-16 ***

American.Dummy -0.060360 0.023690 -2.548 0.01123 *

European.Dummy -0.066574 0.025158 -2.646 0.00847 **

X4.cylinders.dummy 0.120615 0.027892 4.324 1.95e-05 ***

horsepower.10s -0.052686 0.011032 -4.776 2.55e-06 ***

weight.1000s -0.235002 0.038683 -6.075 2.98e-09 ***

horsepower.10s:weight.1000s 0.006617 0.002739 2.416 0.01616 *
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1485 on 385 degrees of freedom

Multiple R-squared: 0.8121, Adjusted R-squared: 0.8092

F-statistic: 277.4 on 6 and 385 DF, p-value: < 2.2e-16

. Given the small p-values for t-tests for model parameters, we have evidence
that each is significantly different from zero and conclude that this model is
effective since the F-test for model significance returned a small p-value as well.
Secondly, if one plots the residual plot and normal Q-Q plot, you will see that
the errors are approximately normal, independent, and have a constant variance.
Hence, we conclude that this semi-log multiple linear regression model with
interaction (the log transformation is applied only to the response and not the
independent variables) is robust. Note, the R-Squared value is almost 10% larger
than that of the log-log regression R-Squared value. The typical error this model
makes on the training data is 1.16 mpg. The test MSE estimates from LOOCV
and ten-fold cross-validation tell us that the model makes an average error of
1.02 mpg for unseen observations. Overall, this model is somewhat comparable
to the log-log model in terms of the residual standard error and estimated test
MSE metrics. Though it may be more complicated, it does explain a significant
proportion of variability in the dependent variable. Also, it does allow us to
make inferences about multiple quantities and factors that have an impact on
the dependent variable as well. To determine if this much more comlex model is
really necessary, one must conduct a nested F-test. We next interpret the model
and use it to make a prediction and construct confidence intervals.

Obviously β̂0 does not have a practical interpretation because it is the mpg of
a car that is manufactured in Japan, with a zero horsepower engine, the engine
is not a four cylinder engine, and the car weighs nothing. Now since this is a
semi-log multiple regression model, the interpretation of the significant variable
coefficients is given in terms of percent change. In particular, the semi-log inter-
pretation of the impact of any independent variable (excluding the interacting
continuous variables) in this model is the following: for any single unit change in

a continuous predictor, Xj , the percent change in mpg is 100 ∗ (eβ̂j − 1)%. The
estimated dummy variable coefficients that represent categories is the following:
when dummy variable Xs = 1 the automatic percent change in the dependent

variable is 100∗(eβ̂s−1)% holding all other independent variables constant (take
on values of zero). Finally, we interpret the interaction of continuous predictors

in this model. That is we want to interpret β̂4X4 + β̂5X5 + β̂6X4X5. Note that,

β̂4X4 + β̂5X5 + β̂6X4X5 = (β̂5 + β̂6X4) ∗X5 + β̂4X4 (8)

. So if X5 increases by one unit of weight then the percent change in mpg is
(β̂5 + β̂6X4) since

(β̂5 + β̂6X4)(X5 + 1) = (β̂5 + β̂6X4)X5 + (β̂5 + β̂6X4) (9)
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for a chosen value of X4. In layman’s terms, if the car has a 175 horespower
engine then the percent change in mpg for a unit increase in weight is ∆% =
100∗(−0.235002+0.006617∗17.5)% = −11.9%. So if a car has a 175 horsepower
engine and its weight increases by 1000 pounds then its mpg is expected to
decrease by 11.9% as compared to what it previously weighed. Is this practical?
Not really since the engine horsepower remains constant for such a large increase
in weight. What is practical is to examine a weight increase of 100 pounds for
a car that has a 175 horsepower engine. In this case the percentage decrease
is 0.10 ∗ −11.9% = −1.19%. The interpretation of the interaction term in this
model was lengthy and abstract. Nevertheless, we have interpreted the ordinary
least squares estimates symbolically and numerically for this model. The fitted
equation below is found below.



4.112− 0.053 ∗X4 − 0.235 ∗X5 + 0.007 ∗X4X5

4.112 + 0.121− 0.053 ∗X4 − 0.235 ∗X5 + 0.007 ∗X4X5

4.112− 0.060− 0.053 ∗X4 − 0.235 ∗X5 + 0.007 ∗X4X5

4.112− 0.060 + 0.121− 0.053 ∗X4 − 0.235 ∗X5 + 0.007 ∗X4X5

4.112− 0.067− 0.053 ∗X4 − 0.235 ∗X5 + 0.007 ∗X4X5

4.112− 0.067 + 0.121− 0.053 ∗X4 − 0.235 ∗X5 + 0.007 ∗X4X5

(10)

To conclude our analysis we will compute a point estimate as well as a pro-
duce 95% confidence and prediction interval. For a car that was manufactured
in America, has a 155 horsepower, weighs 3500 pounds, and is not a four cylin-
der we list the point estimate, confidence as well as the prediction interval below
and can be interpreted similarly to the point estimate as well as the confidence
intervals for the log-log model. We say similary because we consider different
characteristics of the vehicle in the multiple linear regression model. The inter-
pretation of them is almost the same as the log-log fitted value, confidence, and
prediction intervals. The only difference is is that they consider characteristics
such as manufacturer origin, the number of cylinders in the engine, and vehicle
weight.

1

15.98254

fit lwr upr

1 15.98254 15.42804 16.55697

fit lwr upr

1 15.98254 11.90963 21.44833

Summary

We analyzed the miles per gallon rating of automobiles manufactured in
America, Europe, and Japan between 1970 and 1982 using linear regression
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modeling to learn from these data. In our journery, we saw when linear mod-
els may not be appropriate because some or all of the modeling assumptions
were violated. To be precise, the simple linear regression model was not an
appropriate tool to use for explaining a vehicle’s miles per gallon rating using
engine horsepower because the linearity assumption was violated along with the
requirement of the residuals having a constant variance and follow a normal
distribution. We then tried to capture the nonlinear pattern between mpg and
horsepower with a polynomial regression model. Similarly, the residuals did not
exhibit constant variance or normality. However, we were able to transform for
linearity and sample from a normal population. The next step we took was to
increase the amount of variability we could explain in the miles per gallon rat-
ing of these types of cars by fitting a multiple linear regression model (semi-log
model). Since the increase in the R-Squared was large, we concluded that this
was a pretty good model. These are some of the steps a modeler can take when
building a regression model from sample data.
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