
Machine Learning: Decision Trees in Retail

Victor Wright

November 2019

Abstract

In this paper, we first give a brief reasoning why we should use decision
trees versus linear models such as linear regression or logistic regression. This
reasoning is followed by a “toy” example where we grow a regression tree used
to predict Salary contained in the Hitters data set, which is part of the Intro-
duction to Statistical Learning package called ISLR, where a natural logarithm
transformation has been applied to the variable and explain to the reader how
to use the tree for prediction. We do this because the decision trees grown on
Walmart stores data contain many more internal and terminal nodes. We in-
clude the toy example to help ensure that all readers will be able to understand
the decision rules in the larger more complicated trees and use them to make
predictions for Walmart store sales. In the next section, we explain how binary
recursive splitting is used to grow regression and classification trees which is
followed by an explanation of the data source and variables. After this section,
we proceed to load the data and organize it by writing SQL queries. The fi-
nal data matrix we obtain contains five MarkDown variables which happen to
contain some null values. To deal with the missing data, we make use of the
multivariate imputation by chained equations (MICE) algorithm and predictive
mean matching to estimate the missing information in these variables. Once
our data set is completed, we conduct data visualization, grow a regression tree,
engineer a categorical response containing two levels, grow a classification tree,
and make predictions for a new observation X. The paper is concluded with a
section called Regression Tree Improvement Approaches: Bagging and Random
Forests where bagging and random forests are discussed and applied to only our
regression tree.

A Discussion of Decision Trees

In Machine Learning: Learning from Data Using Linear Regression and Ma-
chine Learning: Using the Logistic Regression Model to Predict Coronary Heart
Disease, we provided details about regression and classification problems. When
faced with a regression problem, our objective is to model a continuous depen-
dent variable. On the other hand, in classification problems, our objective is to

1

model a response variable whose values represent categories with one or more
independent variables. However, the models used in each project previously
mentioned should be applied to data that behave in a certain way. Mainly,
linear dependency between the dependent variable and independent variable(s)
is required for both linear and logistic regression. So what happens if there is
nonlinearity between the dependent variable and independent variables in either
a regression or classification problem? What learning approach should we use?

Decision trees are non-parametric models that will often be outshined by
parametric models such as logistic or linear regression models if it appears that
there is a linear or other functional relationship between the dependent and
inpendent variable(s) because the functional form of the these parametric models
are able to capture most of the linear trend or functional form that is clearly seen
in the data [1, 2]. On the other hand, models like linear or logistic regression
will be outshined by decision trees if the relationship between the dependent
variable and independent variable(s) is not linear but exhibits complex patterns
[1]. Additionally, decision trees are thought to have an advantage over other
learning methods when applied to classification or regression problems because
they can always be displayed graphically, better reflect decision-making, and are
much easier to interpret compared to a linear model [1]. In fact, we think they
are very similar to a flowchart. Before we build our own trees in this project, we
grow a regression tree using a data set from the R package, ISLR, which contains
data sets for the text An Introduction to Statistical Learning with Applications
in R by Gareth et al.

The data set Hitters contains 322 observations of major league baseball
players from the 1986 and 1987 seasons. The data set also contains 20 variables.

> library(ISLR)

> library(rpart)

> library(rpart.plot)

> attach(Hitters)

> a <- na.omit(Hitters)

> Salary.tree <- rpart(log(Salary, base = exp(1)) ~ Years +

+ Hits, data = a)

> rpart.plot(Salary.tree, extra = "auto", type = 2, nn = TRUE,

+ varlen = 0, branch = 1, box.palette = 0,

+ yesno = 2, roundint = FALSE, digits = 6)

> detach(Hitters)

2

 Years < 4.5

 Years < 3.5

 Hits < 114

 Hits < 117.5

 Years < 6.5

 Hits < 50.5

5.92722
100.0000%

5.10679
34.2205%

4.89181
23.5741%

4.72739
16.3498%

5.26393
7.2243%

5.58281
10.6464%

6.35404
65.7795%

5.99838
34.2205%

5.68893
9.8859%

6.1241
24.3346%

5.73002
4.5627%

6.21504
19.7719%

6.73969
31.5589%

yes no

yes no

yes no

yes no

yes no

yes no

1

2

4

8 9 5

3

6

12

13

26 27 7

Above is the code and plot of the regression tree. In general, regression trees are
fit using information contained in a data set where the predictor space is divided
recursively and the response, Y, is typically modeled with a unique prediction
constant for each division of the predictor space [1, 3, 4]. Additionally, the mode
or sample mean is commonly used to for predicting the response value and the
sample statistics are calculated from the training data that lie in the division of
the predictor space the observations belongs to [1]. Finally, decision trees are
also a graphical representation of recursive binary splitting, which is also called
binary recursive partioning used to segment the predictor space, that applies to
regression and classification trees when fitting either type of model [1, 4, 5]. We
next explain the major components of the regression tree.

The “bottom” of the tree is where the decision tree’s leaves are found, which
are also called terminal nodes, and when a decision tree’s leaves are found at
it’s bottom, the decision tree is drawn upside down [1]. Decision trees also have
internal nodes which are locations within the tree that indicate how the predictor
space has been divided [1]. Finally, the solid black lines are the decision tree’s
branches which the join the the trees nodes together [1]. We next describe how
to use the regression tree.

The regression tree we produced has seven terminal nodes. Remember, we
have applied a natural logarithm transform to the values in Salary. The pre-
dictor space has been divided into prediction regions in the following way. A →

3

means go to that node. The node number is found in a rectagular box at the
top of the internal and terminal nodes, the percentage indicates the proportion
of training observations that meet the conditions of the node, the last number
in the node is the prediction constant:

� Start with the variable Years. If Years < 4.5, → node 2. If Years < 3.5
→ node 4. If Hits < 114, → node 8 and predict 4.7. This is prediction
region P1

� Start with the variable Years. If Years < 4.5, → node 2. If Years, < 3.5
→ node 4. If Hits ≥ 114, → node 9 and predict 5.3. This is prediction
region P2

� Start with the variable Years. If Years < 4.5, → node 2. If Years ≥ 3.5,
→ node 5 and predict 5.6. This is prediction region P3

� Start with the variable Years. If Years ≥ 4.5, → node 3. If Hits < 117.5,
→ node 6. If Years < 6.5 → node 12 and predict 5.7. This is prediction
region P4

� Start with the variable Years. If Years ≥ 4.5, → node 3. If Hits < 117.5,
→ node 6. If Years ≥ 6.5, → node 13. If Hits < 50.5, → node 26 and
predict 5.7. This is prediction region P5

� Start with the variable Years. If Years ≥ 4.5, → node 3. If Hits < 117.5,
→ node 6. If Years ≥ 6.5 → node 13. If Hits ≥ 50.5,→ node 27 and
predict 6.2. This is prediction region P6

� Start with the variable Years. If Years ≥ 4.5, → node 3. IfHits ≥ 117.5
→ node 7 and predict 6.7. This is prediction region P7

. Note, Years and Hits are discrete values. The tree sees them as continuous.
A function that represents the regression tree is

f̂(X) = 4.7 ∗ I(X ∈ P1) + 5.3 ∗ I(X ∈ P2) + 5.6 ∗ I(X ∈ P3)

+ 5.7 ∗ I(X ∈ P4) + 5.7 ∗ I(X ∈ P5) + 6.2 ∗ I(X ∈ P6)

+ 6.7 ∗ I(X ∈ P7)

(1)

where I is an indicator variable that takes on values of either 0 or 1. I = 1 when
an observation X belongs to that prediction region [1, 4]. I = 0 if it doesn’t.

Recursive Binary Spliting for Decision Trees

When “growing” regression trees, the goal is to minimize

RSS =

J∑
K=1

∑
i∈PK

(yi − ŷPK
)2 (2)

4

where RSS is the residual sum of squares and the observations that fall into
prediction region PK are used to compute the statistic ŷPK

which is typically
either the mean or mode of the training observations that lie in PK [1, 4].
However, dividing the predictor space into J disjoint prediction regions that
would minimize (2) is not practical [1]. The points where the variables are
divided, as well as the variable used in the division of the predictor space, need
to be identified by the algorithm as well as the structure of the tree [4].

In order to minimize (2), we use recursive binary splitting. In the first step
of recursive binary splitting, a half-plane is created in the predictor space which
is given by

P1 = {X | Xr ≤ t} and P2 = {X | Xr > t} (3)

where all of the data is used for this decision and t is the division point of any
available predictor variable Xr ∈ X where r = 1, 2, ..., p [1, 4]. Moreover, the
function

∑
i:xi∈P1(r,t)

(yi − ŷP1)2 +
∑

i:xi∈P2(r,t)

(yi − ŷP2)2 (4)

is minimized by the choice of r and t [1]. After r and t are identified in this
iteration of recursive binary splitting, the next iteration attempts to further
divide the predictor space into further prediction regions by creating another
half-plane using only one of the prediction regions that was obtained in the first
iteration [1]. This occurs if the RSS would attain a smaller value by choosing
a new r and t that define the new half-plane [1]. Different ending criteria may
be selected when building a regression tree with recursive binary splitting, and
when those criteria are reached, the iterative process ceases yielding a regression
tree whose ŷPu , for u = 1, 2, ..., v prediction regions, minimize (2) [1].

If it happens to be the case that the elements of the dependent variable
are discrete values, u = 1, 2, ..., U , each integer representing a unique category,
then the dependent variable contains classification outcomes and that can be
predicted with a classification tree rather than a regression tree [1, 4]. Addi-
tionally, recursive binary splitting is also used to grow classification trees. Let
Pm be a division of the predictor space for m = 1, 2, ...,M possible divisions
containing i = 1, 2, ..., Tm observations of class u. The proportion of class u
observations in Pm is given by

p̂Pm,u =
1

Tm

Tm∑
i=1

I(yi = u) (5)

[4]. Then, for any X ∈ Pm, we compute (5) for all classes u and label X as class
u∗ after identifying the largest computed p̂Pm,u ∈ Pm [4]. Note, the majority
class in Pm is u∗ [4]. The splitting criteria is based on the meausrement of

5

pure the nodes in the classification tree [1]. One way to assess node purity is by
computing the function

G =

Tm∑
i=1

p̂Pm,u ∗ (1− p̂Pm,u) (6)

which is called the Gini index [1]. In classification trees, we seek a predictor and
cut point in each split that minimizes (6) [1].

Walmart Stores Data: The Data Source, an
Explanation of Variables, SQL Joins,
and Multivariate Imputation by Chained
Equations, and Data Visualization

The Data Source and an Explanation of Variables

We obtained three data sets from https://www.kaggle.com/manjeetsingh/retaildataset.
They are sales, features, and stores. Each data set contains a number of fea-
tures/variables but, they exhibit varying dimensions. dim(sales) = 421, 570×5,
dim(features) = 8, 190×12, and dim(stores) = 45×3. The sales data set con-
tains the features Store, Type, and Size. Furthermore, the data in stores is
anonymized for the forty-five stores where the feature Store indicates the store
number, the feature Size is the store size (unit of measurement assumed to be
in square feet), and Type represents the type of store [6].

The data set sales contains observations taken from February 5th, 2010 to
November 1st, 2012 [6]. The features this data set has are Store, which is
common to the stores data set, Dept which is a identifier for the deparment
in each Store, Date is the date the observation was made, WeeklySales is the
weekly sales in a certain department in a certain store, and IsHoliday indicates
if the week the observation was made was a holiday week [6].

The features data set contains the variables Store, Dept, IsHoliday. It also
contains the variables Temperature which is the average temperature of the
region where the store is located at the time of observation (assuming the average
is computed over a seven-day forecast), FuelP rice which is the price of fuel in
the region where the store is located at the time of the observation, CPI is the
consumer price index, and Unemployment is the unemployment rate [6]. The
features data set also contains MarkDown variables 1 - 5 that indicate markdown
sales in dollars. However, the data in these variables is also anonymized and
only available after November 2011 [6]. Finally, these data sets also appear at
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data and
are part of the Walmart Recruiting - Sales Forecasting Kaggle Data competition
that we did not participate in; we only utilize the Walmart data sets in this
project [7]. In this section, we join the available information with the help of

6

SQL and R. Finally, the target variable we want to model is TOTAL which
is total weekly sales for Walmart stores. NOT weekly sales for the individual
departments. We provide code below and comment when necessary.

SQL Joins

> # It is our objective to clean and manipulate the data we have

> # obtained from Kaggle and produce a data set containing relevant

> # features of Walmart stores. We know that the data sets

> # obtained contain information on forty-five Walmart stores.

>

> stores <- read.csv("stores data-set.csv", header = TRUE, sep = ",")

> sales <- read.csv("sales data-set.csv", header = TRUE, sep = ",")

> features <- read.csv("Features data set.csv", header = TRUE, sep = ",")

> #

> # The data has been loaded into R. We next use the sqldf() function,

> # which is part of the sqldf package, to create a data set containing

> # relevant information we wish to use in the construction of our

> # decision trees in this project. SQL script is shown below.

> #

>

> library(sqldf)

> join_1 <- sqldf(x = "SELECT DISTINCT sales.*,

+ features.Temperature, features.Fuel_Price,

+ features.MarkDown1, features.MarkDown2,

+ features.MarkDown3, features.MarkDown4,

+ features.MarkDown5, features.CPI,

+ features.Unemployment FROM sales

+ INNER JOIN features ON

+ sales.Date = features.Date

+ AND sales.Store = features.Store

+ AND sales.IsHoliday = features.IsHoliday")

> #

> # The above query eliminates duplicates and joins the sales and features

> # tables together. We next join the stores table to the table created

> # above.

> #

>

> join_2 <- sqldf(x = "SELECT join_1.*,

+ stores.Type, stores.Size FROM join_1 INNER JOIN stores ON

+ stores.Store = join_1.Store")

> #

> # The final query to create our data set is seen below

> #

>

> final.join <- sqldf(x = "SELECT SUM(Weekly_Sales) AS TOTAL,

7

+ Store, Date, IsHoliday AS Holiday, Temperature,

+ Fuel_Price, MarkDown1, MarkDown2, MarkDown3,

+ MarkDown4, MarkDown5, CPI, Unemployment, Type,

+ Size FROM join_2 GROUP BY Date, Store")

>

> #

> # where TOTAL is a conditional sum that sums the Weekly_Sales of each

> # department for Store i, i = 1, 2, ..., 45, in a single week. Thus,

> # creating the target variable TOTAL.

> #

>

>

Multivariate Imputation by Chained Equations

The final.join data set contains all of the available variables contained in
the data sets that we obtained from Kaggle. However, the MarkDown variables
are still incomplete and contain missing values. In this section, we discuss how
we deal with these null values before modeling TOTAL with a regression tree.
We estimate these missing values by the method of multivariate imputation by
chained equations.

A popular approach when dealing with variables that contain null elements
is multiple imputation [8]. Multivariate imputation by chained equations, also
known as fully conditional specification, can be used to impute data that are
multivariate and contain null values [8]. However, when imputing missing mul-
tivariate, some problems that may be faced are:

� High correlation is present among variables

� The variables may be of different types. E.g., continuous versus binary

� Null values, as well as collinearity, may be introduced when the data set
contains few observations and a large number of variables

and more [8]. On the other hand, when carrying out multiple imputation to fill
in null values of a variable, it is wise to analyze the obtained imputed values and
conclude wether or not they make sense [8]. In other words, the known values
of the variable and imputed values in the variable should not vary wildly [8].
We impute the missing values for MarkDown variables 1-5 with R below. We
comment in the code chunks when necessary.

> cor(na.omit(final.join[, -c(1,2,3,4,14,15)]))

Temperature Fuel_Price MarkDown1 MarkDown2 MarkDown3

Temperature 1.00000000 0.24721805 1.700516e-02 -3.332429e-01 -0.08860119

Fuel_Price 0.24721805 1.00000000 8.492295e-02 -2.424897e-01 -0.09261354

MarkDown1 0.01700516 0.08492295 1.000000e+00 8.122599e-05 -0.12801495

8

MarkDown2 -0.33324293 -0.24248973 8.122599e-05 1.000000e+00 -0.05020980

MarkDown3 -0.08860119 -0.09261354 -1.280150e-01 -5.020980e-02 1.00000000

MarkDown4 -0.05837823 -0.02478564 8.289797e-01 -1.626476e-02 -0.07858316

MarkDown5 0.02370073 -0.13606993 1.091244e-01 -2.129169e-02 -0.04174025

CPI 0.20313773 -0.36955424 -4.889678e-02 -3.813600e-02 -0.02504159

Unemployment -0.01189622 0.28038892 6.451228e-02 1.899580e-02 0.01418730

MarkDown4 MarkDown5 CPI Unemployment

Temperature -0.05837823 0.02370073 0.20313773 -0.01189622

Fuel_Price -0.02478564 -0.13606993 -0.36955424 0.28038892

MarkDown1 0.82897973 0.10912443 -0.04889678 0.06451228

MarkDown2 -0.01626476 -0.02129169 -0.03813600 0.01899580

MarkDown3 -0.07858316 -0.04174025 -0.02504159 0.01418730

MarkDown4 1.00000000 0.10235131 -0.04314642 0.01860101

MarkDown5 0.10235131 1.00000000 0.07580175 0.00244394

CPI -0.04314642 0.07580175 1.00000000 -0.30020470

Unemployment 0.01860101 0.00244394 -0.30020470 1.00000000

. It can be seen from the correlation matrix that correlation between the ma-
jority of variables is low. However, there are some exceptions of moderate and
high correlation.

> #

> # The initial iteration for the MICE Algorithm is

> #

>

> library(mice)

> ini <- mice(data = final.join, print = FALSE, maxit = 0)

> preds <- ini$predictorMatrix

> preds[, "Store"] <- 0

> preds[,"TOTAL"] <- 0

> preds[,"Date"] <- 0

> #

> # which tells R not to use TOTAL, Store, and Date for imputations because #

> # we have no reason to believe that TOTAL, Store that represents the

> # store number, and Date have anything to do with how the stores

> # determine their markdown prices. Imputation is obtained with

> #

>

> imps <- mice(data = final.join, seed = 1203, print = FALSE,

+ method = c("","","","","","","pmm","pmm","pmm","pmm",

+ "pmm","","","",""), m = 10, maxit = 20,

+ predictorMatrix = preds)

>

> #

> # . In the method vector, "" entries mean that no imputation is needed

> # for that variable because it is complete. "pmm" means that the

9

> # imputation model we want to use is predictive mean matching with

> # maxit = twenty iterations and m = ten imputed data sets.

> #

> #

> # The null values in the final.joing data matrix are then filled by

> # the excuting the commands seen below.

> #

>

> library(sjmisc)

> Walmart_Stores <- merge_imputations(dat = final.join, imp = imps,

+ ori = final.join)

> Walmart_Stores <- Walmart_Stores[,-c(7,8,9,10,11)]

> colnames(Walmart_Stores) <- c("TOTAL","Store","Date","Holiday",

+ "Temperature","Fuel_Price", "CPI",

+ "Unemployment","Type","Size",

+ "MarkDown1","MarkDown2","MarkDown3",

+ "MarkDown4","MarkDown5")

> attach(Walmart_Stores)

10

> plot(imps, c("MarkDown1", "MarkDown2"),

+ main = "Convergenge Plot of the MICE Algorithm")

>

>

>

>

Convergenge Plot of the MICE Algorithm

Iteration

60
00

65
00

70
00

mean MarkDown1

70
00

80
00

90
00

sd MarkDown1

30
00

35
00

40
00

45
00

mean MarkDown2
80

00
10

00
0

sd MarkDown2

11

Convergenge Plot of the MICE Algorithm

Iteration

50
0

15
00

25
00

mean MarkDown3

40
00

80
00

12
00

0

sd MarkDown3

28
00

32
00

36
00

mean MarkDown4

50
00

60
00

sd MarkDown4

55
00

60
00

65
00

5 10 15 20

mean MarkDown5
55

00
65

00
75

00

5 10 15 20

sd MarkDown5

12

> library(lattice)

> densityplot(imps, main = "Density Plot of Observed and Imputed Data")

Density Plot of Observed and Imputed Data
D

en
si

ty 0.
00

00
0

0.
00

00
5

0.
00

01
0

0 20000 60000

MarkDown1

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

020000 60000 100000

MarkDown2

0.
00

0
0.

00
4

0.
00

8
0.

01
2

0 50000 100000

MarkDown3
0e

+
00

1e
−

04
2e

−
04

3e
−

04
4e

−
04

0 20000 60000

MarkDown4

0.
00

00
00

.0
00

05
0.

00
01

00
.0

00
15

020000 60000 100000

MarkDown5

The convergence plots show that the MICE algorithm has converged. The den-
sity plot of observed and imputed data for the MarkDown variables shows the
closeness of the imputed data to the known data in the MarkDown variables.
The blue line is the density curve of the known MarkDown values and the red
curve is the density curve of the imputations.

Data Visualization

The Walmart Stores data set is a complete data set where the null values
of the MarkDown variables have been imputed by the MICE algorithm and
predictive mean matching model. dim(WalmartStores) = 6435 × 15. Before
fitting the regression tree to the data, we produce a scatter plot to examine the
relationship between TOTAL and Fuel Price.

13

2.5 3.0 3.5 4.0 4.5

1e
+

06
2e

+
06

3e
+

06

Walmart Weekly Sales vs. Fuel Price

Fuel Price

W
ee

k
S

al
es

No functional relationship between TOTAL and Fuel Price appears in the data.
However, it does appear that TOTAL becomes more variable when Fuel Price
∈ (2.75, 3.75) for only a few cases. In fact, the relationship between TOTAL and
all of the available continuous independent variables in the Walmart Stores data
set is highly complex. Additionally, if one were to make scatterplots to visualize
the dependence between TOTAL and the rest of the independent variables, you
would find that there is no functional form in the data. Thus, it is makes sense
to grow a regression tree to model TOTAL.

Modeling Walmart Weekly Sales with Regression
Trees

In this section we grow two decision trees. One will model TOTAL for the
population of Walmart stores which the sample was taken from. The second
will model a binary response we create later.

The regression tree that models TOTAL for all forty-five Walmart stores is
grown with the R code below.

> library(rpart)

> library(rpart.plot)

> control <- rpart.control(minsplit = 45, minbucket = 143, maxdepth = 29)

14

> Walmart.tree <- rpart((TOTAL/1000000) ~.,

+ data = Walmart_Stores[,-c(2,3)],

+ control = control, method = "anova")

> rpart.plot(left = TRUE , x = Walmart.tree, type = 2, extra = "auto", digits = 6, varlen = 0, box.palette = 0, branch = 1, nn = TRUE,

+ yesno = 2, fallen.leaves = TRUE,compress = TRUE,

+ ycompress = TRUE, roundint = FALSE)

 Size < 171.112e+3

 Size < 98.6595e+3

 Size < 40.486e+3

 CPI >= 131.361

 Type = B

 Size >= 122.195e+3

 Unemployment >= 6.6975

 Size >= 151.914e+3

 Unemployment >= 9.5495

 Unemployment >= 5.9995

 Unemployment >= 8.926

 CPI >= 131.248

 Size < 198.61e+3

 Size >= 202.406e+3

1.04696
100.0000%

0.761927
66.6667%

0.479477
31.1111%

0.389734
17.7778%

0.599134
13.3333%

1.00907
35.5556%

0.943841
28.8889%

0.870986
20.0000%

0.657521
8.8889%

1.04176
11.1111%

0.954731
8.8889%

1.38986
2.2222%

1.10776
8.8889%

0.958596
6.6667%

1.55526
2.2222%

1.29174
6.6667%

1.02237
4.1803%

1.7446
2.4864%

1.61704
33.3333%

1.58874
31.1111%

1.32113
3.4965%

1.62262
27.6146%

1.58254
24.9262%

1.3594
4.4444%

1.63096
20.4817%

1.54073
16.1616%

1.9685
4.3201%

1.99426
2.6884%

2.0133
2.2222%

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

1

2

4

8

9

5

10

20

40

41

82

83

21

42

43

11

22

23

3

6

12

13

26

52

53

106

107

27

7

We chose the minsplit argument to take on a value of forty-five so that in each
splitting rule it is possible that information from each store is considered in
the split. Similarly, we chose the minbucket argument to take on a value of
one hundred and forty-three so that it is possible that information from each
observed week is used to calculate the prediction constant. We see that the
algorithm has included Size in the regression tree. The e + 3 value in the
decision rules mean to multiply the constant to the left of e + 3 by 103. Next,
we estimate the training MSE and test MSE for this regression tree. The test
MSE will be estimated using a 50-50 split.

> training.predictions <- predict(Walmart.tree,

+ newdata = Walmart_Stores[,-c(2,3)])

> trai.MSE <- mean(((Walmart_Stores[,1]/1000000) - training.predictions)^2)

> trai.MSE

[1] 0.05175588

15

> set.seed(31)

> train <- sample(x = 6435, size = 3218, replace = FALSE)

> test <- Walmart_Stores[-train,]

> test.tree <- rpart((TOTAL/1000000) ~., data = Walmart_Stores[,-c(2,3)],

+ subset = train, control = control, method = "anova")

> test.tree.preds <- rpart.predict(object = test.tree, newdata = test,

+ type = "vector")

> test.MSE <- mean(((test[,1]/1000000) - test.tree.preds)^2)

> test.MSE

[1] 0.09027282

>

So the average error the regression tree makes on the entire data set is $1, 000, 000∗√
0.05175588 = $227, 499 and the average error on the test observations, using

a 50-50 split, is $1, 000, 000 ∗
√

0.09027282 = $300, 454.

An Application of Classfication Trees

In this section, we examine the distribution of TOTAL across all stores
and apply classification trees to model a business outcome using the available
independent variables. Similar to the target variable TOTAL we created in the
subsection of this paper called SQL Joins, we create a target variable based on
the distribution of TOTAL. In order to gain an understanding of the distribution
of TOTAL accross all Walmart stores in the population, we create a histogram
of the data in this variable with a density curve. First, the summary statistics
of the variable, as well as its standard deviation, are found below.

Min. 1st Qu. Median Mean 3rd Qu. Max.

209986 553350 960746 1046965 1420159 3818686

[1] 564366.6

. The mean of TOTAL is $1, 046, 065 and its standard deviation is +
−$564, 367

per week. It may be of value to classify what values influence TOTAL to lie
in certain subsets of its known domain. For example, given a case X = (X1 =
x1, X2 = x2, ..., Xn = xn) will TOTAL fall within one sample standard deviation
of the sample mean? To get an idea of TOTAL’s distribution, the reader can
view the distribution of the variable in a histogram below and code used to
produce the image.

> library(ggplot2)

> standard.deviations <- seq(from = 482598.4, to=max(Walmart_Stores$TOTAL), by = sqrt(var(x = Walmart_Stores$TOTAL)))

> ggplot(data = Walmart_Stores, mapping = aes(x = TOTAL)) +

+ geom_histogram(mapping = aes(y = ..density..), bins = 100,

+ fill = "red", color = "black") +

16

+ geom_density(mapping = aes(x = TOTAL), col = "blue", lwd = 1.25,

+ lty = "dashed") +

+ labs(x = "Walmart Weekly Sales", y = "Density",

+ title = "Histogram with Density Plot of Sales") +

+ theme_classic() +

+ theme(panel.grid.major.x = element_line(colour = "white"),

+ panel.grid.major.y = element_line(colour = "white")) +

+ scale_x_continuous(breaks = standard.deviations,

+ labels = c("-1 SDs", "Mean", "1 SDs", "2 SDs",

+ "3 SDs", "4 SDs"))

0.0e+00

3.0e−07

6.0e−07

9.0e−07

1.2e−06

−1 SDs Mean 1 SDs 2 SDs 3 SDs 4 SDs
Walmart Weekly Sales

D
en

si
ty

Histogram with Density Plot of Sales

where the blue dashed line is the population density curve of TOTAL and the x
- axis is labeled in terms of standard deviations from the mean of TOTAL. For
example, the label -1 SDs indicates that weekly sales are one sample standard
deviation below the sample mean of TOTAL and the label 3 SDs indicates
weekly sales that are three sample standard deviations above the sample mean
of TOTAL and so on. Next, we define our target variable to be Class.TOTAL
with the following levels:

� Class.TOTAL = Within when TOTAL ∈ [$482, 598, $1, 611, 332]

� Class.TOTAL = Not Within when TOTAL /∈ [$482, 598, $1, 611, 332]

. Class.TOTAL is created with the following R code.

17

> Class.TOTAL <- ifelse(TOTAL >= mean(TOTAL) - sqrt(var(TOTAL))

+ & TOTAL <= mean(TOTAL) + sqrt(var(TOTAL)),

+ "Within", "Not Within")

> Class.Walmart <- cbind(Class.TOTAL = Class.TOTAL, Walmart_Stores)

. The classification tree can be found below.

> control <- rpart.control(minsplit = 45, minbucket = 143, maxdepth = 29)

> Class.tree <- rpart(Class.TOTAL ~.,

+ data = Class.Walmart[,-c(2,3,4)],

+ control = control, method = "class")

> rpart.plot(x = Class.tree, left = TRUE, type = 2, extra = "auto",

+ digits = 6, varlen = 0, box.palette = 0, branch = 1,

+ nn = TRUE, yesno = 2, fallen.leaves = TRUE,compress = TRUE,

+ ycompress = TRUE, roundint = FALSE)

 Size < 40.486e+3

 Type = A,B

 CPI < 170.156

 Size >= 39.8e+3

 Unemployment >= 9.982

 Size >= 198.61e+3

 Size < 202.406e+3

 Unemployment < 8.0785

 CPI < 212.752

 Size < 63.955e+3

 Unemployment < 8.5815

 CPI >= 204.609

 CPI < 131.361

 Size >= 119.375e+3

 Type = B

Within
0.649106

100.0000%

Not Within
0.250000
17.7778%

Not Within
0.020979
8.8889%

Not Within
0.479021
8.8889%

Not Within
0.319347
6.6667%

Not Within
0.000000
2.2222%

Not Within
0.479021
4.4444%

Not Within
0.020979
2.2222%

Within
0.937063
2.2222%

Within
0.958042
2.2222%

Within
0.735400
82.2222%

Within
0.511565
28.8889%

Not Within
0.031469
4.4444%

Within
0.598856
24.4444%

Not Within
0.450102
15.2603%

Not Within
0.213058
9.0443%

Within
0.795000
6.2160%

Within
0.846024
9.1841%

Within
0.856643
53.3333%

Within
0.557110
6.6667%

Not Within
0.335664
4.4444%

Not Within
0.034965
2.2222%

Within
0.636364
2.2222%

Within
1.000000
2.2222%

Within
0.899434
46.6667%

Within
0.744755
8.8889%

Not Within
0.496503
4.4444%

Not Within
0.000000
2.2222%

Within
0.993007
2.2222%

Within
0.993007
4.4444%

Within
0.935829
37.7778%

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

1

2

4

5

10

20

21

42 43 11

3

6

12

13

26

52 53 27

7

14

28

56 57 29

15

30

60

120 121 61 31

We next produce confusion matrices for this classification tree in order to gain
an understanding of the learning method’s predictive power on the training and
test sets.

> #

> # The code below is used to produce a confusion matrix using all of

> # the data. That is, the full training set.

18

> #

>

> class.training.preds <- predict(object = Class.tree,

+ newdata = Class.Walmart[,-c(2,3,4)],

+ type = "class")

> confusion.matrix.1 <- table(class.training.preds, Class.TOTAL)

> confusion.matrix.1

Class.TOTAL

class.training.preds Not Within Within

Not Within 1859 153

Within 399 4024

> #

> # Next, we produce a confusion matrix for this decision tree using the

> # validation set approach. The split is 50-50.

> #

>

> set.seed(36)

> validation.train <- sample(x = 6435, size = 3218, replace = F)

> validation.test <- Class.Walmart[-validation.train,]

> validation.tree <- rpart(Class.TOTAL ~.,

+ data = Class.Walmart[,-c(2,3,4)],

+ control = control, method = "class",

+ subset = validation.train)

> validation.preds <- predict(object = Class.tree,

+ newdata = validation.test,

+ type = "class")

> confusion.matrix.2 <- table(validation.preds, validation.test[,1])

> confusion.matrix.2

validation.preds Not Within Within

Not Within 929 80

Within 190 2018

>

The sensitivity of the classification tree on all of the training data is 100 ∗
4024

4024+153% = 96.34%, the specificity is 100∗ 1859
1859+399% = 81.25%, and the overall

classification accuracy on the training set is 100∗ 4024+1859
6435 % = 91.42%. The es-

timated test sensitivity of the classification tree is 100∗ 2018
2018+80% = 96.19%, the

estimated test specificity is 100 ∗ 929
929+190% = 83.02% and the estimated overall

test accuracy is 100 ∗ 929+2018
3217 = 91.61% . So we can conclude that this classi-

fication tree is very effective at labeling the categorical response Class.TOTAL
correctly. To conclude this section, we predict TOTAL for a observation X and
then classify whether Class.TOTAL = Within or not.

19

Suppose for one week, and Store 17, the week is not a holiday week, the
average temperature in the region is 71.2 degrees farenheit, the fuel price in
the region is $3.32 per gallon, MarkDown1 dollars are $27, 835, MarkDown2
dollars are $34, 065, MarkDown3 dollars are $31, 223, MarkDown4 dollars are
$51, 189, MarkDown5 dollars are $83, 437, the consumer price index at the time
of observation is 215.2328, and the the unemployment rate is 5.14%. So the
vector we want to predict and classify is constructed by

> pred.vec <- data.frame(Store = 17, Holiday = 0, Temperature = 71.2,

+ Fuel_Price = 3.32, MarkDown1 = 27835,

+ MarkDown2 = 34065, MarkDown3 = 31223,

+ MarkDown4 = 51189, MarkDown5 = 83437,

+ CPI = 215.2328, Unemployment = 5.14,

+ Type = "B", Size = 93188)

> #

> # The predicted value of TOTAL is

> #

>

> 1000000 * rpart.predict(object = Walmart.tree,

+ newdata = pred.vec,

+ type = "vector")

1

599133.7

> #

> # . We next classify the vector.

> #

>

> rpart.predict(object = Class.tree, newdata = pred.vec,

+ type = "class")

1

Within

Levels: Not Within Within

. One can also use the decision rules seen in the plots of the regression and clas-
sification trees to obtain the same prediction and classification of this particular
X.

Regression Tree Improvement Approaches:
Bagging and Random Forest

Bagging

In this section, we briefly describe bagging and random forests which are
methods that can be used to increase prediction accuracy of decision trees. We

20

then apply these to only our regression tree. We do not cover pruning because
the regression tree we grew yielded the lowest test error compared to pruned
trees. These are methods that can be used to improve prediction accuracy by
reducing the variance of the model.

Variances of statistical learning models can be minimized by the technique
of bagging, also known as bootstrap aggregation, which is similar to the bootstrap
resampling method we used to simulate linear regression parameter estimates in
Machine Learning: Learning from Data Using Linear Regression [1]. The idea
if bagging for regression trees is to use the original training set that we have
and generate a large number of bootstrapped training data sets that are created
by resampling from the original training data set [1]. Before applying bagging
to our regression tree, we illustrate with a theoretical example how prediction
accuracy can be improved by reducing variance.

Suppose we are studying a population that has a population mean µ and
variance σ2 and we are interested in the finding an estimate for the population
mean. Next, suppose we collect a sample from that population and the obser-
vations are S1, S2, ..., Sn. Further, Si are independent random variables with
expectation E[Si] = µ and variance V ar[Si] = σ2. Then, it is well known that

E[S̄] =
1

n

n∑
i=1

E[Si] = µ

and

V ar[S̄] =
1

n2

n∑
i=1

V ar[Si] =
σ2

n

[9, 10]. Then, suppose we draw T1, T2, ..., Tn′ and compute T̄ . Further, suppose

that n and n
′

are not very large. 10 ≤ n ≤ 20 as well as n
′
. It is very

possible that S̄ and T̄ will vary greatly from each other. If it is found S̄ and
T̄ vary greatly, it will make it difficult to decide which sample mean we should
use to estimate µ even though we already claimed that E[S̄] = µ and E[T̄] =
µ. The way we could avoid a dilemma like this is by the following: draw
A1, A2, ..., An′′ from the population and let n

′′ → ∞. Then E[Ā] = µ and
V ar[Ā] ≈ 0 making Ā a much better estimator of µ compared to S̄ and T̄ . It
follows that bagging attempts reduce the variance of each prediction constant
contained in a regression tree in a “similar” way. The bagged tree is created
with the code seen below

> library(randomForest)

> bag.Walmart.tree <- randomForest((TOTAL/1000000) ~.,

+ data = Walmart_Stores[,-c(2,3)],

+ mtry = 12, ntree = 1000,

+ replace = TRUE,

+ importance = TRUE)

> bag.Walmart.tree

21

Call:

randomForest(formula = (TOTAL/1e+06) ~ ., data = Walmart_Stores[, -c(2, 3)], mtry = 12, ntree = 1000, replace = TRUE, importance = TRUE)

Type of random forest: regression

Number of trees: 1000

No. of variables tried at each split: 12

Mean of squared residuals: 0.02019391

% Var explained: 93.66

and the form of the bagged regression tree is given by

B(X) =
1

L

L∑
j=1

f̂L(X) (7)

where the bagged tree we produced was obtained by generating one thousand
regression trees, each grown on one of j = 1, 2, ..., L bootstrapped data sets, and
then the prediction constants of each tree were averaged as seen in (7). Finally,
the test MSE for the bagged model using a 50-50 split is

> set.seed(14)

> bag.train <- sample(x = 6345, size = 3217, replace = F)

> bag.test <- Walmart_Stores[-bag.train, -c(2,3)]

> bag.preds <- predict(object = bag.Walmart.tree, newdata = bag.test,

+ type = "response")

> bag.MSE <- mean(((bag.test[,1]/1000000) - bag.preds)^2)

> 1000000*sqrt(bag.MSE)

[1] 61782.38

or $61, 782.

Random Forests

In the previous section, we briefly described bagging and applied it to our
application. Random Forests are an extension of bagging because training sets
are still generated by bootstraping to grow the regression trees in a random
forest [1]. Additionally, random forests provide an improvement over bagging
regression trees [1]. The improvement comes from how many, and which, pre-
dictors are considered to construct the decision rules of the trees grown on each
bootstrapped data set [1]. In the code we have shown for bagging, the mtry
argument indicates the size of the subset of available predictors to randomly
consider at each split in the bagged tree. This information can be found in
the R documentation center for the random forest function. In the code that
created our bagged model, we chose to use a value of mtry = 12 for bagging.
The value for random forests is different.

Predictor subset size in the random selection of variables used to grow bagged
trees and trees in a random forest creates the distinction between bagging and

22

random forests [1]. In random forests of regression trees, the size of the sub-
set of predictors considered at each split is p

3 of p possible predictors in each
bootstrapped data set. This reduction of the size of the subset of predictors,
compared to bagging which grows regression trees by considering all available
independent variables at each split, makes the random forest algorithm superior
to bagging because the trees in the random forest are not as highly correlated
as bagged trees, the grown trees in the random forest are more likely to assume
a larger number of different shapes thus yielding trees that are not as correlated
as the bagged trees resulting in improved performance and accuracy when trees
in the random forest are averaged [1]. Code for the random forest is provided
below.

> Forest.trees <- randomForest((TOTAL/1000000) ~.,

+ data = Walmart_Stores[,-c(2,3)],

+ mtry = 4, ntree = 1000,

+ replace = TRUE,

+ importance = TRUE)

> Forest.trees

Call:

randomForest(formula = (TOTAL/1e+06) ~ ., data = Walmart_Stores[, -c(2, 3)], mtry = 4, ntree = 1000, replace = TRUE, importance = TRUE)

Type of random forest: regression

Number of trees: 1000

No. of variables tried at each split: 4

Mean of squared residuals: 0.01898609

% Var explained: 94.04

>

>

The estimated test MSE of the random forest on a 50-50 split is

> set.seed(18)

> forest.train <- sample(x = 6435, size = 3217, replace = F)

> forest.test <- Walmart_Stores[-forest.train, -c(2,3)]

> forest.preds <- predict(object = Forest.trees, newdata = forest.test,

+ type = "response")

> forest.MSE <- mean(((forest.test[,1]/1000000) - forest.preds)^2)

> 1000000*sqrt(forest.MSE)

[1] 62690.89

or $62, 691 which is a slight improvement compared to the bagged model.

It can be seen that that bagged model and random forest explain a significant
amount of variation in the response. We conclude this section by using the
bagged model and random forest to predict TOTAL on the vector we previously
created in the section called Applications of Classification Trees. The predictions
from the bagged model and random forest are found below.

23

1

771671.7

1

1016684

It appears that the bagged model and random forest return very different pre-
dicted values. Therefore, it might be wise to compare TOTAL for some of the
training data that has feature values close to X before making a decision on
what to forecast. The cases can be returned using SQL.

> comparison.set <- sqldf(x = "SELECT TOTAL, Holiday, Temperature,

+ Fuel_Price, MarkDown1, MarkDown2,

+ MarkDown3, MarkDown4, MarkDown5, CPI,

+ Unemployment FROM Walmart_Stores

+ WHERE Store = 17 AND Holiday = 0")

> range(comparison.set$TOTAL)

[1] 736335.7 1309226.8

> hist(comparison.set$TOTAL, breaks = 20, col = "blue",

+ probability = TRUE, main = "TOTAL for Store 17 - Non Holiday Weeks"

+ , xlab = "TOTAL")

> lines(density(comparison.set$TOTAL), col = "red", lty = "dotted",

+ lwd = 3)

TOTAL for Store 17 − Non Holiday Weeks

TOTAL

D
en

si
ty

700000 900000 1100000 1300000

0e
+

00
1e

−
06

2e
−

06
3e

−
06

4e
−

06
5e

−
06

24

The range of TOTAL is $736, 336 to $1, 309, 227 for store 17 on weeks that
are not holiday weeks. TOTAL for store 17 on weeks that are not holiday
weeks appears to follow a normal distribution. Note, the prediction from the
bagged model is $771, 672 and the mean of TOTAL under these conditions
is $887, 099. Moreover, the standard deviation is less than $100, 000 and the
be tightly clustered around the mean. Therefore, it makes sense to forecast
$771, 672 for weekly since it is closer to the center of the distribution of TOTAL
under these conditions. However, we cannot rule out the fact that the observed
value of TOTAL may fall near the predicted value from the random forest. One
thing is for sure, the predictions of TOTAL for X from the regression tree,
bagged model, and random forest all fall within one standard deviation of the
mean of TOTAL.

Conclusion

In this paper, we briefly explained the benefit of using decision trees over
other methods such as linear or logistic regression. Then, we discussed how re-
cursive binary splitting is used for decision trees. After we created our data set,
we built a regression tree that modeled a target variable, TOTAL that we engi-
neered, and a classification tree that model a target variable called Class.TOTAL
that we engineered as well. Later, we observed that the performance of the deci-
sion trees on the training and test sets was very good. Finally, we attempted to
improve our regression tree through bagging and growing a random forest. The
bagged model and random forest were used to predict the value of TOTAL for
a new observation X. One topic that we did not cover was boosting for decision
trees. We plan on covering this topic in future projects where decision trees are
appropriate learning methods. We may even cover boosting for a completely
different learning method.

References

[1] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning with applications in R. Springer, 2017.

[2] Mandy C. Phelps and Edgar C. Merkle. Classification and regression trees
as alternatives to regression. In Proceedings: 4th Annual Symposium: Grad-
uate Research and Scholarly Projects, pages 77–78, 2008.

[3] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 1(1):14–23, 2011. doi:
10.1002/widm.8.

[4] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of
statistical learning, second edition: data mining, inference, and prediction.
Springer, 2009.

25

[5] G.g. Moisen. Classification and regression trees. Encyclopedia of Ecology,
page 582–588, 2008. doi: 10.1016/b978-008045405-4.00149-x.

[6] Manjeet Singh. Retail data analytics, Sep 2017. URL
https://www.kaggle.com/manjeetsingh/retaildataset.

[7] Walmart recruiting - store sales forecasting. URL
https://www.kaggle.com/c/walmart-recruiting-store-sales-

forecasting/data.

[8] Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate im-
putation by chained equations inr. Journal of Statistical Software, 45(3),
2011. doi: 10.18637/jss.v045.i03.

[9] Morris H. DeGroot and Mark J. Schervish. Probability and statistics.
Addison-Wesley, 2012.

[10] Robert V. Hogg and Elliot A. Tanis. Probability and statistical inference.
Macmillan Publishing Company, 1994.

26

