
Linear Programming: A Discussion of its
Applications in Operations Research, Curve
Fitting, and an Explanation of the Simplex

Algorithm

Victor Wright

May 2017

Introduction

In an multivariable optimization problem we seek to discover if a function
in two or more variables can attain a global optimum on its domain [1, 2].
A multivariable optimization problem is constrained if the function must be
optimized subject to side conditions [1, 2, 3]. Linear programming problems
are a class constrained multivariable optimization problems [1, 3]. Solutions
to these types of multivariable optimization problems are usually found by
utilizing matrix algebra or computational software [4]. In this paper, we
give a detailed description of the linear programming problem, an in-depth
explanation of the simplex algorithm, and present an example of a linear
program to fit a linear and quadratic model to a data set.

Optimization Problems and Linear Program-

ming

In this section we describe optimization in data analysis and the petroleum,
agriculture, and health care industries. Linear programming models can be
built to represent an organizations logistic, economic, or social process [4].
Linear programming models are popular in a multitude of industries [4]. One

1

industry in which they are popular is the petroleum industry [4]. This is be-
cause they can be formulated and solved to discover optimal distribution
routes of crude oil [1, 4]. Analysis of linear programming models can also
determine optimal agricultural product prices or minimize crop fertilizer and
livestock feed costs in the agricultural industry [4]. Finally, linear program-
ming models have been formulated and solved to determine nurse schedules
in clinics, how components of medical devices used to treat malignant tumors
should function resulting in higher quality health care, or data analysis where
the goal is to find the ‘best’ fit lines and quadratic curves to a data set [4].

An organizations logistic, economic, or social process can be constrained
to labor capacity, advertising budgets, scarce resources, or hours of oper-
ation [4]. To accurately represent constrained logistic, economic, or social
processes of an organization, the constraints are required to appear in the
algebraic foundation of the model [4]. Nonetheless, the key point here is
that in different industries these models can be used to optimize an organi-
zations logistic, economic, or social processes. Thus, these models represent
optimization problems. Essentially, we wish to represent the organizations
logistic, economic, or social operations as a mathematical program since they
are destined to be mathematical in nature and must be optimized [4]. It is
here that we define what a mathematical program is, how it should be con-
structed to represent the organizations operating limitations, and its class
before we attempt to solve these optimization problems.

To optimize the logistic, economic, or social process of an organiztion the
first step is to identify and correctly write down the objective that describes
some arbitrary quantity the organization feels should attain the smallest
or largest viable value [4]. The objective is the part of the mathematical
program that we wish to optimize. However, the objective is optimized
when decisions are made. Therefore, the decisions that the organization
must make at a single time are represented by independent variables which
we also call decision variables [1]. In a mathematical program, a decision
variable can represent a route in a logistics problem, an agricultural good
being produced, the number of nurses scheduled to work a particular shift,
or a set of data points. Since we seek a small or large objective quantity, we
choose to mathematically display the objective as some function

f(x1, x2, ..., xn),

where all f are assumed to be differentiable [1]. A solution that will

2

optimize the objective will be found by solving a multivariable optimization
problem [1]. This is the definition of a mathematical program due to the
fact that we represent the objective as a function we wish to optimize [4].
However, the amount of decisions that can be made are often constrained
by some operating limits [4]. Thus, it is suitable to write the optimization
problem with side conditions as:

optimize
f(x1, x2, ..., xn), (1)

subject to

A~x ≤ ~b, (2)

and x1, x2, ..., xn ≥ 0. Here, A is an m × n coefficient matrix, ~x is a
column vector of our decision variables xi for i = 1, 2, ..., n, and ~b is a column
vector of data bj for j = 1, 2, ...,m [3]. Next, assume that the objective can
be written as a linear function f(x1, x2, ..., xn) = c1x1 + c2x2 + ...+ cnxn with
objective data ci. The optimization problem reads

optimize

f(x1, x2, ..., xn) = c1x1 + c2x2 + ...+ cnxn, (3)

subject to


a1,1x1 + a12x2 + ...+ a1,nxn ≤ b1,

a2,1x1 + a2,2x2 + ...+ a2,nxn ≤ b2,

...

am,1x1 + am,2x2 + ...+ am,nxn ≤ bm,

(4)

and x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0 [1, 3]. This model is formally referred to
as a linear programming model written in inequality or standard form [1, 3].

Now the column vector of data ~b in (4) is often referred to as the linear
programs side conditions [3]. For our purposes we choose to refer to the data

in ~b as constraint data. When all values in ~b are known, this means that the
organizations operational limit will be represented in the linear program. For

3

example, if a organization fabricates i goods and each decision variable xi in
f represents good i being manufactured subject to the previously mentioned
data, we wish to conclude what possible quantities of finished good i will op-
timize the objective in question [4]. In this example, the number of decisions
that could be made here are bounded from above by limiting values imposed
by such data [4]. We now ask: how do we optimize f subject to A~x ≤ ~b?

A~x ≤ b is formally known as a constraint system or feasible set [1]. To
make the problem easier to solve, an appropriate manipulation of the weak
inequality forcing A~x = ~b is a wise choice since it forces the model to be
solved on the boundary of the feasible set [1, 3]. Due to linearity, the feasible
set exhibits corner points and thus it is desirable to search the feasible sets
corners for a global maxima which is an n-tuple [1, 3]. In order to implement

this iterative method, we write A~x = ~b as


a1,1x1 + a12x2 + ...+ a1,nxn + xn+1 = b1,

a2,1x1 + a2,2x2 + ...+ a2,nxn + xn+2 = b2,

...

am,1x1 + am,2x2 + ...+ am,nxn + xm+n = bn,

(5)

and x1, x2, ..., xn+m−1, xn+m ≥ 0 [1, 3]. Now the idea of the new variables,
xn+m for j = 1, 2, ...,m, is to introduce some slack into each constraint row
and are thus they are called slack variables [1]. The inequality constraints
are transformed by introducing slack variables. They are introduced to solve
linear programs that are written in inequality form. When the linear program
is written in equality form and solutions attempts are made on it, candidate
n-tuples are commonly calculated by using a variant of the simplex algorithm
[1].

Explanation of the Simplex Algorithm

In this section we illustrate the simplex algorithm to solve a linear program-
ming problem. Consider the following two-dimensional example.

Maximize

4

x1

x2

0 1 2 3 4
0

1

2

3

4

5

6

x
1
+
x
2 ≤

4

3
x
1
+

x
2
≤

6
Figure 1: Illustration of the linear programs feasible set

f(x1, x2) = 2x1 + x2,

subject to

x1 + x2 ≤ 4,

3x1 + x2 ≤ 6,

and x1, x2 ≥ 0 [3]. Using the constraint system, we can draw the feasible
set and solve the problem graphically [3, 4].

5

“Scanning” the feasible set (Fig. 1) reveals three corners which are (0,4),
(2,0), and (1,3). Checking each corner point by evaluating f at them reveals
that (1,3) is the best choice to make. Similarly, the simplex algorithm scans
the feasible set by checking and subsequently changing corners [4]. We next
give a rigorous explanation of how a simplex algorithm would proceed to
solve (3) subject to (4) in the context of maximization.

Let us refer to our objective function by a name and so we shall call
the objective function µ [5]. Next, we introduce slack variables into (4) [5].
Let the slack variables in (5) be written as wj = xn+m for j = 1, 2, ...,m
constraints and the decision variables retain their original appearance [5].
Then, the problem can be rewritten as

maximize

µ = c1x1 + c2x2 + ...+ cnxn, (6)

subject to 
w1 = b1 − a1,1x1 − a1,2x2 − ...− a1,nxn,
w2 = b2 − a2,1x1 − a2,2x2 − ...− a2,nxn,

...

wm = bm − am,1x1 − am,2x2 − ...− am,nxn,

(7)

and x1, x2, ..., xn, w1, w2, ..., wm ≥ 0 [5]. We refer to (6) and (7) as a dic-
tionary [5]. When the problem is written in this form, the simplex algorithm

searches the feasible set ~w = ~b − A~x for a unique optimal solution that will
create the largest increase in µ [3, 5]. This search consists of two phases. In
phase one, an initial feasible solution is constructed by setting the slack and
decision variables to

{
xi = 0,

wj = bj,
(8)

for all i and j [5]. This choice satisfies the dictionary’s non-negativity
requirement and yields µ = 0 [5]. However, this gives rise to the question,

6

is µ = 0 the best we can do? If not, how does a simplex algorithm find a
unique optimal solution that creates the largest increase in µ?

Suppose µ can be increased beyond the initial feasible solution. That is, µ
is not optimal. When this is the case, the simplex method enters phase two.
Phase two of the algorithm identifies a set P = {ck > 0}, picks some xk for k
∈ i = 1, 2, ..., n, and computes the positive values that fulfill the dictionary’s
constraints and would cause the objective value of µ to increase [5]. Once
this xk has been selected, the first iteration of phase two “transforms” the
current dictionary into



µ = ckxk,

w1 = b1 − a1,kxk,
w2 = b2 − a2,kxk,

...

wk = 0

...

wj = bj − aj,kxk,

(9)

where wk is a leaving variable and each wj, j 6= k, are functions of the
entering variable xk [5]. However, the range of positive values that xk can
take must be feasible. That is bj − aj,kxk ≥ wk is required for each j that
corresponds to every positive aj,k ∈ A [5]. This is the selection criterion for
non-optimal µ and xk. That is, when µ is not optimal, the choice of values
that xk can take are computed to satisfy the dictionarys non-negativity re-
quirement such that the maximum feasible value of xk will create the biggest
increase in µ [5]. The non-negativity requirement imposed on the wjs will
be satisfied when the feasible value of the leaving variable, wk, is known [5].
To determine this value, a simplex algorithm sets each wj equal to the min-
imum feasible value of wk, which is zero, and solves xk = bj/aj,k j times [5].
After this step is completed, this data is stored in a set M = {bj/aj,k > 0}
[5]. Finally, the selection criterion for the feasible value of wk is as follows:
select an l ∈ M such that each bj − aj,kxk ≥ wk when each wj is evaluated
at xk = bl/al,k, bl/al,k is the smallest element in M, l is chosen such that
bl/al,k defines the upperbound of xk’s feasible range, and (0, ..., bl/al,k, ..., 0)
is a corner of the feasible set [3, 5]. Furthermore, µ = ck ∗ bl/al,k is the

7

improvement [3, 5]. If P = ∅ after this iteration, then the objective function
value cannot be further increased [3, 5]. The corner is the unique optimal
solution [3, 5]. On the other hand, if P 6= ∅, the change of basis as described
above is repeated until the unique corner that will maximize µ is found [3, 5].

Suppose that after this iteration, P is nonempty. When this is the case,
the next iteration begins with xk and wk introduced in (6) and (7). However,
k is an inactive index due to the fact that µ has already been increased by
bl/al,k [3, 5]. Thus, the simplex algorithm must create a new dictionary that
contains the information from previous iteration [5]. For this to happen, xk
must become the leaving variable and wk becomes the entering variable. For
this to happen in phase two of the simplex method, the simplex algorithm
computes a change of basis and then constructs the new dictionary. This
change of basis is ~w = ~b− A~x −→ ~̃w = ~b− A~̃x, where

~̃w =
[
w1 w2 ... xk ... wj

]T
,

~̃x =
[
x1 x2 ... wk ... xn

]T
,

(10)

and xk = bk
ak,k
− 1

ak,k

∑k−1
i=1 ak,ixi −

1
ak,k

wk − 1
ak,k

∑n
i=k+1 ak,ixi in the new

constraint system ~b−A~̃x and µ̃ as well [5]. Note that we solved for xk in the

kth constraint row of ~w = ~b− A~x. Thus, the new dictionary becomes

maximize
µ̃ = c1x1 + c2x2 + ...+ ckxk + ...+ cnxn

subject to

w1 = b1 − a1,1x1 − a1,2x2 − ...+
a1,k
ak,k

xk − ...− a1,nxn,

w2 = b2 − a2,1x1 − a2,2x2 − ...+
a2,k
ak,k

xk − ...− a2,nxn,

...

xk =
bk
ak,k
− ak,1
ak,k

x1 −
ak,2
ak,k

x2 − ...−
1

ak,k
wk − ...

ak,n
ak,k

xn,

...

wm = bm − am,1x1 − am,2x2 − ...+
am,k

ak,k
xk − ...− am,nxn,

(11)

8

[5]. The change of basis is essentially a row operation that swaps wk and xk
forcing them to play different roles in this new dictionary [5]. This change of
variables is formally known as the Gauss-Jordan Algorithm where the pivot
element was ak,kxk in ~w = ~b − A~x [3, 5]. Finally, the simplex method will
enter phase one and then phase two until a successive iteration cannot further
increase µ̃. Hence, P̃ = ∅ and µ̃ is optimal [3, 5].

An Application of Linear Programming: For-

mulation of a Curve Fitting Problem and its

Solution

In this section we discuss how to formulate a linear program to fit ŷi =
âxi + b̂, and quadratic curve, ŷi = âx2i + b̂xi + ĉ, to a collection of points,
(xi, yi), in a data set [4]. We desire that these models will explain most of
the true linear or quadratic relationship, yi = axi + b and yi = ax2i + bxi + c,
that exists between all of the data points (xi, yi) [4]. In other words, we wish
to fit the ‘best’ âxi + b̂ ≈ yi and âx2i + b̂xi + ĉ ≈ yi to the data by formulating
a linear program and solving it [4].

Consider the data set

Table 1: Table 1 is the data set that contains the collection of points (xi, yi)
we wish to use linear programming to find a linear model âxi+b̂ and quadratic
curve âx2i + b̂xi + ĉ that will have the ‘best’ fit to these data.

x 0.0 0.5 1.0 1.5 1.9 2.5 3.0 3.5 4.0 4.5
y 1.0 0.9 0.7 1.5 2.0 2.4 3.2 2.0 2.7 3.5

x 5.0 5.5 6.0 6.6 7.0 7.6 8.5 9.0 10.0
y 1.0 4.0 3.6 2.7 5.7 4.6 6.0 6.8 7.3

However, the parameters a, b, and c are all unknown and need to be
approximated from these data. There are two approaches that we can use to
find the ‘best’ estimates of a, b, and c [4]. The ‘best’ estimates can be found
by

• Case I: min!
∑19

i=1 |yi − ŷi|. In doing so ŷi = âxi + b̂ and ŷi = âx2i +

9

b̂xi + ĉ will be the best approximations of the true linear or quadratic
relationship that exists in (Table 1).

• Case II: For each case we consider |yi − ŷi| in (Table 1) and the linear
and quadratic estimations of these relationships. The ‘best’ fit straight
line and quadratic curve can be found by minimizing the maximum
deviation that occurs at each case i. That is we can find the best
approximations to the true linear or quadratic relationship, ŷi = âxi+ b̂
and ŷi = âx2i + b̂xi + ĉ, in the data set (Table 1) by min!(max|yi− ŷi|).

[4]. We first discuss case I and how to formulate linear programming
models that minimize the sum of absolute deviations for both models we wish
to estimate from the data in (Table 1). Let ui define the horizontal deviation
between the true linear or quadratic relationship that exists between (xi, yi)
and the models we wish to estimate for i = 1, ..., 19 cases [4]. Similarly, let
vi define the vertical deviation for i = 1, ..., 19 cases [4]. However for each
case i, the deviation of ui or vi can be positive or negative [4]. Hence, a, b,
and c must be defined to be free variables due to the fact that we are seeking
the smallest

∑19
i=1 |yi − ŷi| [4]. In other words, we must the solve the linear

programming model for all possible sign combinations of a, b, and c to find
the smallest

∑19
i=1 |yi − ŷi| [3]. The linear programming model that must be

solved to approximate yi = axi + b in the case I approach is

minimize

f(u1, u2, ..., u19) + g(v1, v2, ..., v19) =
19∑
i=1

ui +
19∑
i=1

vi (12)

subject to


ax1 + b+ u1 − v1 = y1,

ax2 + b+ u2 − v2 = y2,

...

ax19 + b+ u19 − v19 = y19,

(13)

10

and u1, u2, ..., u19, v1, v2, ..., v19 ≥ 0 [4]. To estimate ax2i + bxi + c in the
case I approach we minimize (12) subject to (14).


ax21 + bx1 + c+ u1 − v1 = y1,

ax22 + bx2 + c+ u2 − v2 = y2,

...

ax219 + bx19 + c+ u19 − v19 = y19,

(14)

and u1, u2, ..., u19, v1, v2, ..., v19 ≥ 0 [4]. But since a, b, and c are free
variables we must solve (12) subject to (13) four times and (12) subject to
(14) eight times in order to determine the optimal value of (12) for all possible
sign combinations of a, b, and c [3]. Furthermore, since the constraints
in (13) and (14) are equality constraints and the objective of case I is to
min!

∑19
i=1 |yi − ŷi| we will obtain âxi + b̂ ≈ yi and âx2i + b̂xi + ĉ ≈ yi for

each possible sign combination of a, b, and c when the models are solved.
We solve the linear programming models with a simplex algorithm and list
the results in the tables below.

Table 2: The optimal values in (Table 2) are the minimized sum of absolute
deviations for all four attempts to find the ‘best’ fit line. â and b̂ are the
parameter estimates for ŷi = âxi + b̂ obtained by using a simplex algorithm
on (12) subject to (13). The ‘best’ fit line is ŷi = 0.6375xi + 0.5812 since
f̃ + g̃ = 11.5000 in the case I solution.

Results of Minimizing the Sum of Absolute Deviations

Cases Optimum â b̂
Case I: a ≥ 0 and b ≥ 0 11.5000 0.6375 0.5812
Case II: a ≥ 0 and b ≤ 0 12.6727 0.7273 0.0000
Case III: a ≤ 0 and b ≥ 0 30.5000 0.0000 2.7000
Case IV: a ≤ 0 and b ≤ 0 61.6000 0.000 0.000

Table 3: The optimal values in (Table 3) are the minimized sum of absolute
deviations for all eight attempts to find the ‘best’ fit quadratic curve. â, b̂,
and ĉ are the parameter estimates for ŷi = âx2i + b̂xi + ĉ obtained by using a
simplex algorithm on (12) subject to (14). The ‘best’ fit quadratic curve is
ŷi = 0.0337x2i +0.2945xi +0.9823 since f̃+ g̃ = 10.4600 in the case I solution.

11

Results of Minimizing the Sum of Absolute Deviations

Cases Optimum â b̂ ĉ
Case I: a ≥ 0, b ≥ 0, and c ≥ 0 10.4600 0.0337 0.2945 0.9823
Case II: a ≥ 0, b ≥ 0, and c ≤ 0 12.6439 0.0033 0.6967 0.0000
Case III: a ≥ 0, b ≤ 0, and c ≤ 0 20.0299 0.0830 0.0000 0.0000
Case IV: a ≤ 0, b ≥ 0, and c ≥ 0 11.5000 0.0000 0.6375 0.5812
Case V: a ≤ 0, b ≥ 0, and c ≤ 0 12.6727 0.0000 0.7273 0.0000
Case VI: a ≥ 0, b ≤ 0, and c ≥ 0 11.7421 0.6423 0.0000 1.3553
Case VII: a ≤ 0, b ≤ 0, and c ≥ 0 30.5000 0.0000 0.0000 2.7000
Case VIII: a ≤ 0, b ≤ 0, and c ≤ 0 59.6000 0.0000 0.0000 0.0000

We next discuss case II. The objective of case II is to minimize the max-
imum deviation that occurs at each case i. For each case i, âxi + b̂ and
âx2i + b̂xi + ĉ will deviate from yi by some horizontal distance ui and vertical
distance vi. Note that it is possible to have ui = vi = 0 for some of the cases.
In the event that ui and vi are both zero for some case i, this implies that
yi = ŷi. When ŷi is not a perfect fit to yi, then ui and vi must be nonzero.
For the i = 1, 2, ..., 19 cases, we assume that ui and vi will all be nonzero for
each case.

Let h be arbitrary. Let h − ui ≥ 0 and h − vi ≥ 0 be the observable
horizontal and vertical deviations of âxi + b̂ and âx2i + ˆbxi + ĉ from yi for each
case i. Thus our objective is to minimize h and obtain min!(max|yi − ŷi|)
which is the optimal value of h. Furthermore, the optimal value of h is the
largest possible deviation of âxi + b̂ and âx2i + b̂xi + ĉ from yi. The linear
programming model that must be solved to approximate axi + b in the case
II approach is

minimize

D(h) = h (15)

12

subject to



ax1 + b+ u1 − v1 = y1,

ax2 + b+ u2 − v2 = y2,

...

ax19 + b+ u19 − v19 = y19,

h− u1 ≥ 0,

h− v1 ≥ 0,

h− u2 ≥ 0,

h− v2 ≥ 0,

...

h− u19 ≥ 0,

h− v19 ≥ 0,

(16)

and h, u1, u2, ..., u19, v1, v2, ..., v19 ≥ 0 [4]. To estimate ax2i + bxi + c in the
case II approach we minimize (15) subject to (17).



ax21 + bx1 + c+ u1 − v1 = y1,

ax22 + bx2 + c+ u2 − v2 = y2,

...

ax219 + bx19 + c+ u19 − v19 = y19,

h− u1 ≥ 0,

h− v1 ≥ 0,

h− u2 ≥ 0,

h− v2 ≥ 0,

...

h− u19 ≥ 0,

h− v19 ≥ 0,

(17)

and h, u1, u2, ..., u19, v1, v2, ..., v19 ≥ 0 [4]. We solve the linear program-
ming models with a simplex algorithm and list the results in the tables below.

13

Table 4: The optimal values in (Table 4) are the minimized maximum devia-
tion for all four attempts to find the ‘best’ fit line. â and b̂ are the parameter
estimates for ŷi = âxi + b̂ in each case when the objective is to minimize
the maximum deviations. The ‘best’ fit line is ŷi = 0.6250xi − 0.4000 since
D̃ = 1.7250 in the case II solution.

Results of Minimizing the Maximum deviations

Cases Optimum â b̂
Case I: a ≥ 0 and b ≥ 0 1.7920 0.5833 0.0000
Case II: a ≥ 0 and b ≤ 0 1.7250 0.6250 -0.4000
Case III: a ≤ 0 and b ≥ 0 3.3000 0.0000 4.0000
Case IV: a ≤ 0 and b ≤ 0 7.3000 0.0000 0.0000

Table 5: The optimal values in (Table 5) are the minimized maximum de-
viation for all eight attempts to find the ‘best’ fit quadratic curve. â, b̂,
and ĉ are the parameter estimates for ŷi = âx2i + b̂xi + ĉ in each case
when the objective is to minimize the maximum deviations. The ‘best’ fit
quadratic curve that is obtained by minimizing the maximum deviations is
ŷi = 0.1250x2i − 0.6250xi + 2.4750 since D̃ = 1.4750 in the case VI solution.

Results of Minimizing the Maximum Deviation

Cases Optimum â b̂ ĉ
Case I: a ≥ 0, b ≥ 0, and c ≥ 0 1.6000 0.0625 1.0375 0.0000
Case II: a ≥ 0, b ≥ 0, and c ≤ 0 1.6902 0.0174 0.4511 0.0000
Case III: a ≥ 0, b ≤ 0, and c ≤ 0 2.3330 0.0963 0.0000 0.0000
Case IV: a ≤ 0, b ≥ 0, and c ≥ 0 1.79166 0.0000 0.5583 0.0000
Case V: a ≤ 0, b ≥ 0, and c ≤ 0 1.7250 0.0000 0.6250 -0.40000
Case VI: a ≥ 0, b ≤ 0, and c ≥ 0 1.4750 0.1250 -0.6250 2.4750
Case VII: a ≤ 0, b ≤ 0, and c ≥ 0 3.3000 0.0000 0.0000 4.0000
Case VIII: a ≤ 0, b ≤ 0, and c ≤ 0 7.3000 0.0000 0.0000 0.0000

14

0 2 4 6 8 10

0

2

4

6

8
Data Points

0.6375x + 0.5812
0.6250x - 0.4000

Figure 2: Plot of the ‘best’ fit lines to the data in (Table 1). The red
‘best’ fit line in (Fig. 2) was obtained by minimizing (12) subject to (13).
The estimates of a and b for the red ‘best’ line are listed in (Table 2) and
correspond to the case I solution. The blue ‘best’ fit line was obtained by
minimizing (15) subject to (16). The estimates of a and b for the blue ‘best’
fit line are listed in (Table 4) and correspond to the case II solution.

0 2 4 6 8 10
0

2

4

6

8

Data Points

0.0337x2 + 0.6375x+ 0.5812

0.125x2 − 0.625x+ 2.475

15

Figure 3: The red ‘best’ fit quadratic curve in (Fig. 3) was obtained by
minimizing (12) subject to (14). The estimates of a, b, and c for the red
‘best’ fit quadratic curve are listed in (Table 3) and correspond to the case
I solution. The blue ‘best’ fit quadratic curve in (Fig. 3) was obtained by
minimizing (15) subject to (17). The estimates of a, b, and c for the blue
‘best’ fit quadratic curve are listed in (Table 5) and correspond to the case
VI solution.

Conclusion

We gave examples of optimization in the petroleum, agriculture, and
health care industries. Secondly, we gave an in depth but generalized de-
scription of a linear programming problem that was written in inequality
form. It was also discovered that some two-dimensional linear programs can
be solved graphically or by using a simplex algorithm to discover an optimal
n-tuple. Next, the mechanisms of the simplex algorithm were described in
great detail. In the last section of this paper, we saw that goal programming
models can also be built and solved to find linear and quadratic curves in a
single predictor that are ‘best’ fits to a data set. Thus, it is easy to see that
linear programs have a wide application.

Since linear programming models have wide application, certain circum-
stances imposed on the objective, constraints or decision variables are com-
mon. For example, when the decision variables are constrained to only
take integer values, these linear programs are classified as integer programs
[1, 3, 4]. If they are constrained to only take the values 0 and 1, they are
known as binary integer programs [1, 3, 4]. In some cases, constraints can
take the form Pr[

∑n
i=1 am,ixi ≤ bm] ≥ β where β is a probability for any

particular constraint row m [4]. In other words, these are called chance con-
straints. These are used in a constraint system when we must be α% sure
that Pr[

∑n
i=1 am,ixi ≤ bm] holds at least β% of the time [4]. Finally, if it so

happens that the objective contains decision variables that must be raised
to a power or functions of decision variables such as ex1 , this program is
nonlinear [4].

16

References

[1] Mark M. Meerschaert. Mathematical modeling. Academic Press/Elsevier,
2013.

[2] James Stewart. Calculus. Brooks/Cole, 2003.

[3] Matthias S. Maier. Linear programming lecture notes.
https://ay15.moodle.umn.edu/course/view.php?id=13393.

[4] H. P. Williams. Model building in mathematical programming. Wiley,
1999.

[5] Robert J. Vanderbei. Linear programming: foundations and extensions.
Springer, 2014.

17

