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Abstract

In linear regression modeling, it is the analyst’s responsiblility to make var-
ious assumptions about the the relationship between a dependent variable Y, a
set of independent variables X, and the unobservable statistical errors εi. In par-
ticular, one assumes that the true relationship Y between and X is linear, the
residuals have constant variance, the errors are independent, and they should
follow a distribution that is symmetric around a mean of µ = 0 and have vari-
ance σ2. I.e., follow a normal distribution. As discussed in Machine Learning:
Learning from Data Using Linear Regression, variable transformations can be
used to satisfy the linearity condition as well as the constant variance and nor-
mality assumptions in some cases. This is necessary because we assume that the
true regression model errors have such properties as well. However, interpreta-
tions of such models can become increasingly difficult when the regression model
has a large number of variables as well as interaction terms. This is because the
interpretation of the impact of the transformed independent variables have on
the dependent variable have to be interpreted in terms of the transformations.
For example, when logarithms are applied to the data in the variables, indepen-
dent or dependent, the interpretation of how the independent variable(s) impact
the dependent variable are given as a percent change.

In this paper, we analyze a complex data set that contains information that
describes medical expenses for over thirteen hundred beneficiaries on a insurance
plan and build linear a regression model that attempts to explain the variability
in the project target variable Expenses. Additionally, we do not fit a regression
model with an intercept. Instead, we regress Expenses on a set of indepen-
dent variables through the origin. Most of which we engineer based on facts we
previously discovered while conducting research for our previous project titled
Machine Learning: Using Logistic Regression to Predict Coronary Heart Dis-
ease. Secondly, the enineered features are all binary valued categorical variables
that represent various groups of beneficiary body mass indices for smoker and
nonsmoker benficiaries. Therefore, these indicator variables allow us to model
the impact of various BMI levels on Expenses for smoker and nonsmoker ben-
ficiaries. Thirdly, we also discover that there are multiple linear relationships
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between Expenses and a continuous variable Age when the pairs (Age, Expenses)
are plotted and grouped by the categories we engineered. Finally, Regression
through the origin (RTO) is thought to be controversial and we discuss why it
is thought to be so by touching on statements in contained Eisenhauer’s (2003)
discussion. Then, give a brief argument as to why we believe RTO is appropriate
for our problem.

The estimated RTO model appears to perform very well on all of the train-
ing data at a first glance. For example, we are able to obtain R2 = 93.75%.
However, the residual plot of the estimated residuals vs the model’s fitted values
shows that the likelihood of nonconstant variance in the residuals is extremely
high and we test for the condition using a technique constructed by Weisberg
and Cook (2014). Since the majority of the independent variables are binary
valued, we could not apply natural logarithm transforms to them and did not
bother applying root transforms since

√
0 = 0 and

√
1 = 1 in hopes to achieve a

constant variance. Additionally, a combination of natural logarithm transforms
to Expenses and Age returned residual plots that exhihibted very bad behavior.
Additionally, we identified a large amount of outliers. Near the end of the pa-
per, we briefly describe weighted least squares and iteratively reweighted least
squares (IRLS). We make use of the IRLS fit and make a prediction with the
model.

An Explanation of Variables, Feature
Engineering, Data Visualization with R, and
Regression Through the Origin

An Explanation of Variables

In this section, we provide a brief discussion of the information we have ob-
tained. We also provide scatter plots as well as grouped scatter plots of the
data and identify trends in the information and estimate a regression through
the origin via OLS. The variables in the data set are, Age, Sex, BMI, Chil-
dren, Smoker, Region, and Expenses. The data set we have obtained, Ex-
penses.csv, can be found at https://www.kaggle.com/mirichoi0218/insurance
or https://github.com/stedy/Machine-Learning-with-R-datasets and are part
of Machine Learning with R: Learn how to use R to apply powerful machine
learning methods and gain insight into real-world applications by Brett Lantz.
The data were collected from the US Census Bureau and based on demographic
statistics computed by the organization [1]. Since the data were collected by
the US Census Bureau, the data contain some level of realism regarding patient
medical costs in the United States [1]. A description of the variables can be
found below.
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We name our data set Expenses which contains insurance plan beneficiary in-
formation, some patient qualities, total medical expenses charged to the plan
over the course of a yearand, and 1338 training examples [1]. In the Expenses
data set, primary beneficiary ages are contained in Age which are recorded as
integers ranging from 18 to 64, Sex which is a qualitative variable indicating
male or female, BMI which is the body mass index of the person measured
in kg

m2 , the number of children that the beneficiary has which are also covered
by the plan (children/dependents) is Children, Smoker indicating whether or
not the beneficiary smokes, Region which divides the country into the regions
northeast, northwest, southwest, and southeast which classifies where the ben-
eficiary’s place of residence lies in the United States, and Expenses which are
charged to the plan per year [1]. Even though age is reported as an integer,
the concept of age is clearly continuous. E.g., age can be finely divided into
months, weeks, days, hours, etc. The other continuous variables in the data set
are clearly BMI and Expenses. A scatter plot of Expenses vs. Age can be seen
below along with the code used to contruct the image.

Data Visualization

> ggplot(Expenses, aes(x = Expenses$age, y= Expenses$expenses)) +

+ geom_point(col = "blue", xlab = "age", size = 10) + theme_bw() +

+ theme(plot.title = element_text(colour = "blue", face = "bold.italic",

+ size = 80),

+ axis.title.x = element_text(colour = "blue", face = "bold",

+ size = 70),

+ axis.title.y = element_text(colour = "blue", face = "bold",

+ size = 70),

+ axis.text.x = element_text(size = 50),

+ axis.text.y = element_text(size = 50),

+ panel.grid = element_blank()) +

+ ggtitle(label = "Expenses vs. Age") +

+ xlab("Age") + ylab("Expenses")
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Above is the scatterplot of Expenses vs. Age. Both variables are continuous
variables. It is immediate that the relationship between Expenses and Age is
linear. Moreover, there appears to be three linear trends in the scatter plot
indicating that claims may be higher for some groups vs. others that we have
yet to identify. Below a scatter plot of Expenses vs. BMI can be seen. Code to
produce the image is omitted because it is very similar to the code that produced
the scatter plot of Expenses vs. Age.
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It appears that the relationship betweem Expenses and BMI is linear over the
entire domain of BMI for only some of the observations.

Feature Engineering, Continued Data Visualization and
Regression through the Origin

We have seen that there are three linear trends in the scatterplot of Ex-
penses vs. Age and some linearity in the scatterplot of Expenses vs. BMI. Since
the linearity between Expenses and Age appears to break into groups, this is
indicative that we may be able to find categorical variables through feature en-
gineering that uniquely defines a linear trend for each group. Visitors who have
read Machine Learning: Using the Logistic Regression Model to Predict Coro-
nary Heart Disease, may recall that the act of smoking and being overweight
were some patient characteristics that were identified, and agreed upon by many
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health care professionals, to be major risk factors of absolute short-term risk of
CHD development [2]. Since this is the case, and based on intuition, it is logical
to assume that claims are likely to be higher for benficiaries that exhibit such
characteristics. Thus, the beneficiaries can be separated into such groups.

In this section, we construct a handful of indicator variables that places sub-
sets of the ordered pairs of BMI and the levels of Smoker into different groups.
Recall, observations that belong to some category can be represented by an in-
dicator variable that has been coded to indicate which group the observation
belongs to [3]. Finally, from the scatterplot of Expenses vs. Age, it appears
that Expenses increases at the same constant rate as Age increases in each lin-
ear trend. On the other hand, the variable Expenses tends to be automatically
higher for some groups in the population of beneficiaries compared to others.
If we were to model the trends with a linear model, the forms of appropriate
models to capture the linear trends are

E[Y | X] = β0 +β1,X1
IX1

+β2,X2
IX2

+ ...+βK,XK
IXK

+βS1
∗X1 +βS2

X2 (1)

where (1) is a multiple linear regression model [3, 4, 5]. The βk,Xk
are intercepts

in (1) for k = 1, 2, ...,K possible groupings in the relationship of Expenses vs.
Age, IXK

for k = 1, 2, ...,K are binary-valued indicator variables, and βS1
is the

slope for Age and βS2
is the slope for the Children variable.

From our previous work in Machine Learning: Using the Logistic Regression
Model to Predict Coronary Heart Disease, a patient is said to have a normal body
weight when their BMI ∈ [18.5000, 25.0000), overweight when their BMI ∈
[25.0000, 29.9999), and obese when bmi ≥ 29.9999), and BMI is measured in
kg
m2 [2]. In addition to the mentioned intervals, certain levels of BMI can put
one at greater risk of developing diabetes. For example, it was found through
the analysis of the Study to Help Improve Early evaluation and management of
risk factors Leading to Diabetes (SHILED) study that persons with BMI ≥ 28
in kg

m2 were at a high risk of developing diabetes [6, 7]. In this section, we create
indicator variables that represent such weight conditions and classify each person
as either a smoker or non-smoker. We provide code that accomplishes this below
and comment when appropriate.

> Expenses <- data.frame(age, bmi, children, smokeryes, expenses)

> attach(Expenses)

> #

> # Note, smokeryes = 1 when the person is a smoker and 0 if

> # they are not a smoker.

> #

> # The variables that indicate persons who can be classified as

> # underweight, having a normal body weight, being overweight, being

> # overweight and having an increased risk of developing diabetes,

> # or obese AND non-smokers are created below.
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> #

>

> non_under <- ifelse(bmi <18.5000 & smokeryes == 0, 1, 0)

> non_normal <- ifelse(bmi < 25.0000 & bmi >= 18.5000 & smokeryes == 0,

+ 1, 0)

> non_over <- ifelse(bmi < 28.0000 & bmi >= 25.0000 & smokeryes == 0,

+ 1, 0)

> dm_risk_non <- ifelse(bmi < 29.9999 & bmi >= 28.0000 & smokeryes == 0,

+ 1, 0)

> non_obese <- ifelse(bmi >= 29.9999 & smokeryes == 0, 1, 0)

> #

> # The variables that indicate persons who are underweight

> # have a normal body weight, are overweight, have a bmi where

> # being diagnosed with diabetes is common but not obese, and

> # being obese AND each person is a smoker are created below.

> #

>

> smoke_under <- ifelse(bmi <18.5000 & smokeryes == 1,1,0)

> smoke_normal <- ifelse(bmi < 25.0000 & bmi >= 18.5000 & smokeryes == 1,

+ 1, 0)

> smoke_overweight <- ifelse(bmi >=25.0000 & bmi < 28.0000 & smokeryes==1,

+ 1,0)

> dm_risk_smoke <- ifelse( bmi < 29.9999 & bmi >= 28.0000 & smokeryes == 1,

+ 1, 0)

> smoke_obese <- ifelse(bmi >= 29.9999 & smokeryes == 1,1,0)

> Expenses <- data.frame(age, smoke_under, smoke_normal,

+ smoke_overweight, dm_risk_smoke,

+ smoke_obese, non_under, non_normal, non_over,

+ dm_risk_non, non_obese, children, expenses)

> colnames(Expenses) <- c("X_1","X_2","X_3","X_4","X_5","X_6","X_7",

+ "X_8","X_9","X_10",

+ "X_11", "X_12", "expenses")

> attach(Expenses)

Before fitting a linear model, we describe the aliases of the independent variables
we use to model Expenses. The list of aliases is found below.

� X1 is the age of the primary beneficiary.

� X2 = 1 if the person is a smoker and underweight. X2 = 0 otherwise.

� X3 = 1 if the person is a smoker and has a normal body weight. X3 = 0
otherwise.

� X4 = 1 if the person is a smoker, overweight, and is not diabetic or unlikely
or undiagnosed diabetes. X4 = 0 otherwise.
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� X5 = 1 if the person is a smoker, overweight, and is likely to develop
diabetes. X5 = 0 otherwise.

� X6 = 1 if the person is a smoker and obese X6 = 0 otherwise.

� X7 = 1 if the person is a non-smoker and underweight X7 = 0 otherwise.

� X8 = 1 if the person is a non-smoker and has a normal body weight.
X8 = 0 otherwise.

� X9 = 1 if the person is a non-smoker, overweight, and is not diabetic or
unlikely to have undiagnosed diabetes. X9 = 0 otherwise.

� X10 = 1 if the person is a non-smoker, overweight, and is likely to develop
diabetes. X10 = 0 otherwise.

� X11 = 1 if the person is a non-smoker and obese. X11 = 0 otherwise.

� X12 is the number of dependents covered.

The grouped scatter plot of the Expenses vs. Age is found below.
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The fitted regression model is
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> OLS <- lm(expenses ~. + 0, data = Expenses)

> summary(OLS)

Call:

lm(formula = expenses ~ . + 0, data = Expenses)

Residuals:

Min 1Q Median 3Q Max

-19610.3 -1844.4 -1297.7 -502.5 24426.4

Coefficients:

Estimate Std. Error t value Pr(>|t|)

X_1 265.686 8.858 29.995 < 2e-16 ***

X_2 9918.211 2048.579 4.842 1.44e-06 ***

X_3 9223.495 728.435 12.662 < 2e-16 ***

X_4 11318.625 785.355 14.412 < 2e-16 ***

X_5 12424.002 864.220 14.376 < 2e-16 ***

X_6 30595.517 519.187 58.930 < 2e-16 ***

X_7 -3687.904 1202.670 -3.066 0.00221 **

X_8 -2632.521 481.401 -5.468 5.42e-08 ***

X_9 -2421.257 491.358 -4.928 9.37e-07 ***

X_10 -2914.988 528.763 -5.513 4.24e-08 ***

X_11 -2533.612 418.543 -6.053 1.84e-09 ***

X_12 517.741 102.934 5.030 5.58e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4510 on 1326 degrees of freedom

Multiple R-squared: 0.9375, Adjusted R-squared: 0.937

F-statistic: 1658 on 12 and 1326 DF, p-value: < 2.2e-16

>

. Note, this is linear regression is a multiple linear regression through the origin
because we have specified in theR lm function that we do not wish to include an
intercept by including + 0. We have computed a regression through the origin
because we have strong reason to believe that Expenses = 0 for any Age = 0
making it appropriate to exclude β0 from the model [8, 9].

In Regression through the Origin (RTO) by Eishenhauer includes a statement
from Hocking (1996, pg. 177) concerning RTO when the data are far from the
origin [8]. The argument is as follows: there is no certainty or proof that linearity
exists in the dependency between Y and any X close to the origin if it so happens
that the observed data are distant from the origin [8]. In other words, the the
behavior of the process under study near the origin may exhibit some other
unobserved functional behavior [8]. Again, in this application, it makes sense
to conclude that Expenses = 0 when Age = 0 because the person is unborn.
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Secondly, we are confident that for Age ∈ (0, 18) we must have Expenses = 0
because you have to be eighteen or older in the US to have an insurance policy.
Therefore, the relationship between Expenses and Age must be constant at zero
when Age ∈ [0, 18) and linear when Age ∈ [18, 64]. Since this is the case, RTO
is appropriate and the model will estimate a value of $0.00 for persons with
that have 0 ≤ X1 < 18. Finally, we are not saying that minors do not have any
medical expenses/costs. The multiple RTO model, with coefficients rounded to
two decimal places, is

E[Y | ~X] = 265.69 ∗X1 + 9918.21 ∗X2 + 9223.49 ∗X3 + 11318.62 ∗X4

+12424.00 ∗X5 + 30595.52 ∗X6 − 3687.90 ∗X7 − 2632.52 ∗X8

−2421.26 ∗X9 − 2914.99 ∗X10 − 2533.612 ∗X11 + 517.74 ∗X12

(2)

.

Regression Diagnostics

We have obtained a linear model that explains a significant percentage of
variability in the target variable Expenses. Further, it appears that all the slopes
for the independent variables are significantly different from zero. This can be
seen from the summary print out. All p-values, or Pr(>| t |), are approximately
zero. Secondly,R2 = 0.9375 or 93.75% of the variability in Expenses is explained
by this regression. In this section, we first produce a residual plot and histogram
of the errors for this model. The residuals are color-coded according to group.
This plot is found below.
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The grouped residual plot shows that the variance may not be constant, there
appears to be a large amount of outliers, and it appears that

∑1338
i=1 êi 6= 0.

However, in regression through the origin
∑1338
i=1 êi 6= 0 [5]. Finally, it looks to

be that there many large residuals for some of the nonsmoker cases, a few large
residuals for some of the smoker cases as well as obsese smokers. The histogram
of the residuals is found below.
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It appears that the errors follow a normal distribution centered at µ < 0 which
is heavy tailed. To conclude this section, we test for nonconstant variance using
a test based on work by Cook and Weisberg (1983) using their model that
is comparable to what was discovered by Breusch and Pagan (1979) [5]. If
V ar[ei] 6= 0 for all data cases i = 1, 2, ..., n then the variance function of the
errors is given by

V ar[ei] = σ2 ∗ e(λ
T ~zi) (3)

and V ar[ei] = σ2 for all i if λ = 0 [5]. So the hypotheses tested are H0 : λ = 0
vs. HA : λ 6= 0 [5]. The computations needed to obtain the test statistic(s) for
the test are described below.

� Store the eis obtained from regressing a response Y on the independent
variables.

� Compute δ2 =
∑n

i=1 êi
2

n and the vector α whose elements are êi
2

δ2 for i =
1, 2, ..., n cases.

� Regress α on the vector z whose elements are either ŷi if the variance
is thought to depend on fitted values of the model. Or, z contains the
regressors.

� Obtain the regression sum of squares from α regressed on z. Compute
the test statistic C which follows a χ2

1 distribution if z contains fitted
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values. On the other hand, if z consists of p regressors, then C follows a
χ2
p distribution. In either case, C is the regression sum of squares divided

by 2.

[5]. We carry out the test for our model below with z = X.

> rm1 <- residuals(OLS)

> deltasq <- (sum(rm1^2))/(nrow(Expenses))

> testalpha <- (rm1^2)/(deltasq)

> testreg <- lm(testalpha ~ X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7

+ + X_8 + X_9 + X_10 + X_11 + X_12 + 0)

> summary(testreg)

Call:

lm(formula = testalpha ~ X_1 + X_2 + X_3 + X_4 + X_5 + X_6 +

X_7 + X_8 + X_9 + X_10 + X_11 + X_12 + 0)

Residuals:

Min 1Q Median 3Q Max

-1.7666 -1.0067 -0.8953 -0.7163 28.4733

Coefficients:

Estimate Std. Error t value Pr(>|t|)

X_1 -0.002342 0.006714 -0.349 0.727335

X_2 2.126723 1.552833 1.370 0.171051

X_3 0.457438 0.552158 0.828 0.407562

X_4 0.652547 0.595303 1.096 0.273208

X_5 0.592754 0.655083 0.905 0.365708

X_6 1.020200 0.393546 2.592 0.009638 **

X_7 0.065828 0.911630 0.072 0.942447

X_8 1.048076 0.364904 2.872 0.004141 **

X_9 1.260206 0.372451 3.384 0.000736 ***

X_10 0.880413 0.400805 2.197 0.028221 *

X_11 1.123161 0.317258 3.540 0.000414 ***

X_12 0.050580 0.078025 0.648 0.516935

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.419 on 1326 degrees of freedom

Multiple R-squared: 0.08343, Adjusted R-squared: 0.07514

F-statistic: 10.06 on 12 and 1326 DF, p-value: < 2.2e-16

> SSE <- 3.419^2*1326

> SYY <- (SSE)/(1 - 0.08343)

> C <- 0.5*(SYY - SSE)

> pvalue <- pchisq(q = C, df = 12, lower.tail = FALSE)

> pvalue
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[1] 2.998693e-143

>

>

so we conclude that nonconstant variance is an issue because we rejectH0 : λ = 0
and is likely to be caused by our choice of independent variables. We next
conduct the test to see if nonconstant variance is also caused by the fitted
values. To do this, we make a minor adjustment to the code above where z
contains fitted values from the model instead of the independent variables. We
omit the code and report only the p-value of the test below.

[1] 0.1715319

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 1.869569, Df = 1, p = 0.17152

which indicates that it is highly unlikey that nonconstant variance of the resid-
uals is created by the fitted values returned by our multiple linear regression
model. Note, the p-value from the procedure given by Weisberg (2014) is similar
to the p-value returned from the ncvTest (nonconstant variance test) function.

A Discussion of Weighted Least Squares and
Robust Regression

Weighted Least Squares

We saw in the previous section that nonconstant variance in the estimated
residuals is most certainly an issue after we tested for the condition. Moreover,
it seems that our choice of independent variables to model Expenses is most
likely the cause of this violated OLS assumption. This is because the test for
nonconstant variance we described in the previous section returned an extremely
small p-value forcing us to reject H0 : λ = 0. Additionally, has lead us to
believe that λ 6= 0 due to our choice of indepedent variables. In this section,
we discuss weighted least squares and iteratively reweighted least squares (IRLS)
and estimate the linear model with the IRLS method.

Recall that in linear regression V ar[Y | X] = σ2 or V ar[ei] = σ2 is assumed
when we believe that a dependent variable can be modeled with a linear mean
function [5]. In some cases, our assumption about the variance function may be
wrong and the true variance function is

V ar[Y | X] =
σ2

wi
(4)

so σ2 still plays a role in describing the variance function[5]. However, for
i = 1, 2, ..., n the value of the function is not constant and is dependent on
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the realized numbers w1, w2, ..., wn which are greater than zero [5]. If we as-
sume that the variance function has this form, we must use the method of
weighted least squares to compute approximations to the constants in the lin-
ear function instead of the ordinary least squares approach [5]. We know that

β̂ = (XTX)−1XTY for linear regression but, for weighted least squares

β̂ = (XTWX)−1XTWY (5)

where each wi appear as diagnonal entries of the n×n matrix W and (W )i,j = 0
when i 6= j so W is a digagonal matrix [5]. That is the appearance of W is

W =



w1,1 0 · · · 0 0 0
0 w2,2 · · · 0 0 0

0 0
. . . 0 0 0

...
... · · ·

. . .
...

...
0 0 · · · 0 wn−1,n−1 0
0 0 · · · 0 0 wn,n


[5, 9]. Moreover, if W is invertible, the elements of W−1 must be 1

wi
for i =

1, 2, ..., n since W is a diagonal matrix and wi > 0 [9, 10].

As previously stated, we also suspect that we are dealing with many outliers
in this problem as well. This is another issue we must account for. To identify
outliers, we compute

ˆσ2
stan =

êi

σ̂2
√

1− hi
(6)

which is called a standardized residual for i = 1, 2, ..., 1338 cases [11]. Addition-

ally, if case i has ˆσ2
stan > 2 or ˆσ2

stan < −2, then case i is sometimes called a

moderate outlier. Finally, if ˆσ2
stan > 3 or ˆσ2

stan < −3 indicates case i is a serious
outlier [11]. We compute the standardized residuals below and count how many
moderate and serious outliers are present when using the OLS estimator below.

> library(MASS)

> library(sqldf)

> standardized_residuals <- data.frame(stdres(OLS))

> colnames(standardized_residuals) <- c("standardized_residuals")

> standardres <- data.frame(stdres(OLS))

> colnames(standardres) <- c("standardized_residuals")

> moderate_outliers <- sqldf(x = "SELECT standardized_residuals FROM

+ standardres WHERE standardized_residuals < -2

+ OR standardized_residuals > 2")

> serious_outliers <- sqldf(x = "SELECT standardized_residuals FROM

+ standardres WHERE standardized_residuals

+ < -3 OR standardized_residuals > 3")

> #
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> # The number of moderate outliers is

> nrow(moderate_outliers)

[1] 91

> # The number of serious outliers is

> nrow(serious_outliers)

[1] 63

Robust Regression: Iteravtively Reweighted Least Squares

If OLS is used to estimate β, outliers are present, and the residuals deviate
from normality, β̂ can be severely distorted [12, 13, 14, 15]. Also, parameter
estimated standard errors suffer because the variances of their errors increase in
the presence of outliers can and contain bias [16]. In other words, even if it is
found that it is reasonable to believe that the εis are normal, the standard error
of β̂ may be quite large in the presence of outliers [17]. This appears to be the
case in our problem as well.

In cases where there are many outliers, robust regression can be used to ob-
tain healthy parameter estimates [18]. Secondly, since we have found evidence
of nonconstant variance, Strickland claims that robust regression can be con-
sidered and employed in such scenarios [19]. In summary, one alternative to
OLS regression when the constant variance and normality of the residuals are
violated is robust regression [12, 19]. One robust method minimizes the function

n∑
i=1

ρ(
yi − xTi β

σ
) (7)

[12, 15]. Secondly, σ in (7) must also be estimated. This estimate is given by

σ̂ = median|êi−median(êi)|
0.6745 [12]. Finally, partial derivatives of (7) are calculated

with respect to each β and then set to zero [12, 15]. The derivative of ρ is
known as the influence function [12]. The partial derivative of (7) with respect
to independent variable j is

n∑
i=1

xi,jµ(
yi − xTi β

σ
) (8)

where µ is the influence function or weight function which depends the residuals
[15]. Note, If there is no intercept, p partial derivatves are calculated and set
to zero for j = 1, 2, ..., p independent variables. β is found by the method of
iteratively reweighted least squares where

βt+1 = (XTWtX)−1XTWtY (9)

is calculated at each iteration and Wt is a diagonal weight matrix at iteration t
[12, 15]. The elements of Wt are
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wi,t =

{
µ(yi−x

Tβt

σt
) when yi 6= xTβ

1 when yi = xTβ

[12]. The algorithm is the following: at the first iteration, estimate the ordinary
least squares coefficients to start the iterative process. Then, calculate the
elements of Wt−1 as well as the the residuals ˆet−1 for i = 1, 2, ..., n cases from
the previous iteration. Define a stopping criterion. The criterion is to stop
when the change between βt and βt+1 is small indicating that the algorithm
has found a solution. Otherwise, continue the process until the change is is
below some threshold [12, 15]. Using the Tukey’s Biweight we have

> library(MASS)

> weightrob <- rlm(expenses ~ X_1 + X_2 + X_3 + X_4 + X_5 + X_6 +

+ X_7 + X_8 + X_9 + X_10 + X_11 + X_12 + 0,

+ data = Expenses, method = "M",

+ psi = psi.bisquare

+ , wt.method = "case",

+ maxit = 30, acc = 0.001)

> summary(weightrob)

Call: rlm(formula = expenses ~ X_1 + X_2 + X_3 + X_4 + X_5 + X_6 +

X_7 + X_8 + X_9 + X_10 + X_11 + X_12 + 0, data = Expenses,

psi = psi.bisquare, maxit = 30, acc = 0.001, method = "M",

wt.method = "case")

Residuals:

Min 1Q Median 3Q Max

-18260.16 -455.21 86.24 728.27 25946.61

Coefficients:

Value Std. Error t value

X_1 268.8105 1.5553 172.8326

X_2 6761.0615 359.7119 18.7958

X_3 8696.1243 127.9067 67.9880

X_4 10487.2831 137.9013 76.0492

X_5 11594.4741 151.7493 76.4055

X_6 29114.1457 91.1645 319.3584

X_7 -3744.6293 211.1780 -17.7321

X_8 -3923.2030 84.5296 -46.4122

X_9 -4059.0921 86.2780 -47.0467

X_10 -4093.0734 92.8461 -44.0845

X_11 -4025.8740 73.4924 -54.7795

X_12 427.3424 18.0744 23.6436

Residual standard error: 827.8 on 1326 degrees of freedom

>
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Compared to the OLS fit, the iteratively least squares solution appears to be
much better because the parameter standard errors are much smaller. Secondly,
the residual standard error is significantly smaller compared to the OLD residual
standard error which is 4510. Below one can find the model fit to the data below
where the value of Children is held constant at zero.
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Scatter Plot of Expenses vs.
Age with Robust Regression
IRLS Model

Unfortunately the plot above is very busy and complicated. The takeaway is that
it the linearity assumption appears to hold and the model passes through the
bulk of the linear trends in the grouped data. Note, this is a two dimensional
plot. In this two dimensional plot, we hold X13 constant at zero. Similar
plots can be created for different values of Children. In other words, this is
the multiple linear regression model fit to the data where none of the primary
beneficiaries have children. Below we return 95% confidence intervals for the
model coefficients of the IRLS model.

2.5 % 97.5 %

X_1 265.7621 271.8589

X_2 6056.0390 7466.0839

X_3 8445.4319 8946.8168

X_4 10217.0014 10757.5647

X_5 11297.0510 11891.8972

X_6 28935.4666 29292.8248
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X_7 -4158.5306 -3330.7280

X_8 -4088.8781 -3757.5280

X_9 -4228.1938 -3889.9904

X_10 -4275.0484 -3911.0984

X_11 -4169.9164 -3881.8316

X_12 391.9173 462.7676

The model’s R-squared value is computed below.

> SST <- sum((expenses - mean(expenses))^2)

> RRegSSE <- sum((expenses - fitted.values(weightrob))^2)

> RRegRSQ <- 1 - (RRegSSE)/(SST)

> RRegRSQ

[1] 0.8493014

or R2 = 84.93% which is lower than the OLS R-squared. Finally, we estimate
the test mean square error with a 50-50 split.

> set.seed(3)

> train <- sample(x = nrow(Expenses),

+ size = round(x = 0.50* nrow(Expenses), digits = 0),

+ replace = FALSE)

> test <- Expenses[-train, ]

> test.rlm <- rlm(expenses ~ X_1 + X_2 + X_3 + X_4 + X_5 + X_6 +

+ X_7 + X_8 + X_9 + X_10 + X_11 + X_12 + 0,

+ data = Expenses, method = "M",

+ psi = psi.bisquare

+ , wt.method = "case",

+ maxit = 30, acc = 0.001,

+ subset = train)

> test.predictions <- predict(object = test.rlm, newdata = test,

+ interval = "none",

+ type = "response")

> Test.MSE <- mean((test$expenses - fitted.values(test.rlm))^2)

> Test.MSE

[1] 263268233

So the average squared error is 263, 268, 233 dollars squared and the root mean
squared error is $16, 225.54. The training MSE is

> r <- predict(object = weightrob, newdata = Expenses,

+ interval = "none", type = "response")

> Train.MSE <- mean((Expenses$expenses - fitted.values(weightrob))^2)

> Train.MSE

[1] 22083789
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The training MSE is much smaller than that of the test MSE. With the val-
idation set approach, the error may be quite large due to some of the erratic
behavior of the data. In general, we do not expect the test error to be much
larger than the training MSE and root MSE. The summary of the training IRLS
model is seen below.

Call: rlm(formula = expenses ~ X_1 + X_2 + X_3 + X_4 + X_5 + X_6 +

X_7 + X_8 + X_9 + X_10 + X_11 + X_12 + 0, data = Expenses,

psi = psi.bisquare, maxit = 30, acc = 0.001, subset = train,

method = "M", wt.method = "case")

Residuals:

Min 1Q Median 3Q Max

-3077.60 -411.83 78.98 662.22 24134.24

Coefficients:

Value Std. Error t value

X_1 265.1525 2.1068 125.8560

X_2 6924.2144 433.6041 15.9690

X_3 8822.5008 159.4394 55.3345

X_4 10574.3056 186.3066 56.7576

X_5 12016.4095 218.3365 55.0362

X_6 29110.6421 122.4992 237.6394

X_7 -3872.3776 309.4929 -12.5120

X_8 -3741.0493 110.8177 -33.7586

X_9 -3981.6716 112.9287 -35.2583

X_10 -3980.9725 125.4807 -31.7258

X_11 -3929.5068 98.1382 -40.0405

X_12 424.1781 23.7419 17.8662

Residual standard error: 768.2 on 657 degrees of freedom

The change in the coeffcients of the model fit on the training set seems to
be small. Instead of relying on the estimation of the test MSE and test root
mean squared error, we examine the closeness between the test observations and
predicted values with the graph below.
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Above we see that the majority of the predicted values are quite close to the
actual expense values. Note, predictions in the plot were made on unseen data
cases. Additionally, in this plot, we subsetted the test set such that X4 = 1
in each data case and all other indicator variables were not activated. In other
words, the test cases only consisted of insurance beneficiaries who are overweight
smokers who are not likely to suffer from diabetes. Of course, the other inde-
pendent variable is Age. The largest test error on under these circumstances
is

[1] 1786.916

which is $1, 786.92. So the model appears to perform reasonably well on unseen
cases that lie in this particular subset of X. Suppose that we want to predict
Expenses for a policyholder who is 33 years old, has no children, and is a smoker
but, is not likely to develop diabetes. Additionally, highly unlikely to have
undiagnosed diabetes. The prediction is

E[Y | X∗] = 268.81 ∗ 33 + 10487.28 + 427.34 ∗ 0 (10)

which rounds to $19, 358.01 for an entire year.
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Conclusion

In this paper, we conducted a regression through the origin using ordinary
least squares to predict medical expenses for a population of beneficiaries on
an insurance plan. Along the way, we ran into some complications. I.e., we
witnessed that some of the ordinary least squares assumptions were violated.
Namely the assumption of normality and constant variance of the errors. We
then briefly described weighted least squares and iteratively reweighted least
squares. After estimating the regression parameters and standard errors via
IRLS, we saw a significant decrease in the standard errors of the parameter
estimates. We then assessed the accuracy of the model using the validation set
approach. Additionally, we examined the closeness of the fitted values to actual
values for the IRLS model for unseen data cases. From what was observed, it
appeared that the model performed well on these particular unseen data. Similar
visual analysis should be conducted when making predictions about Expenses
for beneficiaries that fall into different groupings. Finally, it appears that the
IRLS model is superior compared to the OLS fit.
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