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Abstract

Logistic regression is a supervised machine learning algorithm that can be
applied to some classification problems. In “Machine Learning: Using the Lo-
gistic Regression Model to Predict Coronary Heart Disease”, we first provide a
summary of the logistic regression model and identify similarities between it and
linear regression. We also discuss the structure of the target variable, explain
the modeling objective of logistic regression, introduce the concept of utilizing
conditional probability in classification problems, and present the two forms of
the logistic regression model to the reader. Next, we provide a definition of
coronary heart disease (CHD) and identify and discuss the major risk factors
of CHD recognized by government health organizations as well as health care
professionals and researchers. For continuous risk factors, we indicate how these
quantities have and can represent different categories, or levels, of certain med-
ical conditions. For example, the condition of obesity is identified if a patient’s
body mass index (BMI) measurement falls into a certain range. Moreover, obe-
sity is a condition that can also be further subdivided into different stages of
obesity based upon certain measurements of BMI according to government and
health care professionals. Following our discussion of the major CHD risk fac-
tors, we explain our target variable and give meaning to the values it contains.
Next, we supply to the reader the data source, provide a brief history of the
Framingham Heart study, show our data cleansing procedure, and describe a
routine that can be used to produce empirical logit plots for categorical and
continuous independent variables. Finally, in the later sections of this paper, we
provide a description of variables, fit logistic regression models, analyze receiver
operating characteristics curves, explore confusion matrices, and discuss vari-
able selection methods used. In particular, we make use of the Boruta (search)
algorithm as well as variable importance rankings to help us construct a robust
model we use for classification.
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A Brief Discussion of the Logistic Regression Model

The logistic regression model is somewhat similar to the linear regression
model. It is similar because like linear regression it is also a supervised learning
method which can be estimated using information in a data matrix, J , that
contains k variables and n observations (i.e., dim(J) = n × k) [? ]. One
being the dependent/response variable and k-1 independent/predictor variables.
However, in comparison to linear regression, the modeling objective is somewhat
different [1, 2? ].

Like linear regression, we still want to regress Y on the independent variables
X = [ ~X1, ~X2, ..., ~Xk] [1, 2]. I.e., explain the linear dependency between Y and X
(where X,Y ∈ J). And like linear regression, logistic regression is considered to
be a flexible modeling approach. Flexibility is not declared about f but declared
since the model can be applied to model a variety of processes in various fields.
However, the information contained in Y is not considered to be continuous.
In fact, Y is a categorical variable [1, 2? ]. Furthermore, if Y only contains
two categories, these categories are often represented with a binary coding (Y
can also be referred to as an indicator variable or binomial response) [1, 2? ].
I.e., either Y = 1 or Y = 0 where Y = 1 represents the event of success and
Y = 0 represents the event of failure [2]. Moreover, in this type of regression
problem, we want to model the event of Y = 1 for any observation X [1]. In
other words, we wish to classify which category any observation Xn belongs to
based on its feature values [X1 = xn,1, X2 = xn,2, ..., Xk = xn,k] regardless if
Xn is contained in a training or test set. [? ]. Therefore, this type of problem
is a regression problem where the objective is classification [? ]. Finally, we
use the concept of probability to assign, or classify, which category (Y = 1 or
Y = 0) each observation belongs to [? ]. A mathematical model for events that
are said to be uncertain is probability (probability always lies in the interval
[0, 1]) which we use to measure the likelihood of uncertain events [3, 4]. In other
words, we use the concept of probability to help us model the event Y = 1 for
any observation Xn [1? ].

We previously mentioned that logistic regression is similar to the linear re-
gression model. Thus, some of the modeling assumptions for linear regression
carry over to the logistic regression model. In particular, the three assumptions
that carry over are linearity, independence, and randomness [1]. Independence
and randomness can be determined based on how the data were collected [1].
The factor that creates a difference between the two is the modeling objective
of logistic regression; modeling the probability of Y = 1 [1, 2? ].

The probability of success, the probability of Y = 1 given Xn, can (and has
been) represented by various notations. Some examples are Pr(Y = 1),Pr(Y =
1 | X = x), p, π, and p(x) for any of the i = 1, 2, ..., n observations in X [1, 2? ].
In this paper, we will use p which is a conditional probability. This just means
that the value of p is dependent on some other event that has already been
observed so p is not constant; the value of p is dependent on Xn [1, 3, 4]. There
are two forms of the logistic regression model that can be used to describe the
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likelihood of the event Y = 1 given Xn. They are the logit form (log odds) and
probability form of the model [1]. The logit form is

ln(
p

1− p
) = β0 +

k∑
j=1

βjXj (1)

and

p =
exp(β0 +

∑k
j=1 βjXj)

1 + exp(β0 +
∑k

j=1 βjXj)
(2)

is the probability form of the logistic regression model [1]. Additionally, (1) and
(2) are the logit and probability forms of a multiple logistic regression model for
j = 1, 2, ..., k. [1]. Note that in between (1) and (2) there is an intermediate
transformational step which is called odds and is

p

1− p
= exp(β0 +

k∑
i=1

βiXi) (3)

[1]. Linearity can be verified is by assessing the relationship between the em-
pirical logit and the predictor variables [1]. We assess linearity later. Finally,
functional transforms can be applied to the data in the predictors when they are
continuous and then included in the logistic regression model as well as dummy
variables [1? ]. In fact, linearity is automatic when dummy variables are used
in the logistic regression model [1].

Definition of Coronary Heart Disease (CHD) and
Major Risk Factors and Conditions

The National Cancer Institue defines coronary heart disease (CHD) as a car-
diovascular disease (CVD) that is caused by plaques and fatty material build-up
that occurs in the coronary arteries of the heart (atherosclerosis) such that the
build-up of the material is strong enough to narrow or entirely block the heart’s
coronary arteries which transport oxygen and blood to the heart [5]. Healthcare
professionals claim that any amount of cigarette consumption, diabetes melli-
tus, obesity, family history of premature CHD, elevated blood pressure, elevated
serum total cholesterol (TC), elevated low-density lipoprotein cholesterol (LDL-
C), and low serum high-density lipoprotein cholesterol (HDL-C), left ventricular
hypertrophy, and advancing age have been considered to be independent major
risk factors of CHD [6, 7]. Much scientific and medical research has been con-
ducted on well-known risk factors, and through research findings, decisions and
definitions have been made about what measurements categorize such risk fac-
tors. E.g., an individuals body mass index (BMI) of a patient has been defined
as the calculation of the patient’s weight (measured in kilograms) divided by
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their height (measured in square meters) and has been accepted by the American
Heart Association as an appropriate characteristic that can be used to measure
adiposity (being categorized as severely overweight or obese) in male and female
patients [8]. Moreover, BMI has also been used as a metric in other research
papers that discuss obesity and acknowledge it as a risk factor of CHD [6, 7, 9].

In Assessment of Cardiovascular Risk by Use of Multiple-Risk-Factor Equa-
tions by Grundy, Pasternak, et al. the normal weight of a patient is defined as
18.5 ≤ BMI ≤ 24.9 in kg

m2 . They also define the condition of being overweight

as 25 ≤ BMI ≤ 29 in kg
m2 , and obesity as BMI > 30 kg

m2 [7]. Additionally, they

state that obesity class I is present when 30.0 ≤ BMI ≤ 34.9 in kg
m2 is observed,

obesity class II is present when 35.9 ≤ BMI ≤ 39.9 in kg
m2 is observed, and

obesity class III is present BMI > 50.0 in kg
m2 is observed [7]. However, adipose

tissue distribution and patient sex can pose difficulties when BMI is used to iden-
tify levels of obesity in a patient because this metric does not adjust for where
and how fat is distributed in the body (pelvis, abdomen, etc.) which makes it
difficult to define universal thresholds, or rankings, of BMI that indicates dif-
ferent levels of unhealthy BMI [8]. In Current Estimates of the Economic Cost
of Obesity in the United States by Wolf and Colditz overweight is considered to
be 25.0 ≤ BMI ≤ 29.9 in kg

m2 and obesity is considered to be BMI > 30 in kg
m2

which corresponds to the AHA’s current definition of overweight and obesity
based on the BMI metric [9, 10]. Neither parties acknowledge stage I, II, or III.
Finally, the definition of normal body weight in the work by Grundy, Pasternak,
et al. corresponds to the AHA’s current definition of normal body weight [6, 10].

Similar to BMI, blood pressure is also a continuous quantity, which is mea-
sured in mm Hg, and certain interval readings of a patient’s blood pressure can
be used to classify what type of blood pressure a patient has [6, 7, 11]. The JNC-
VII ranks blood pressure readings of systolic BP < 120 or diastolic BP < 80 as
optimal blood pressure which corresponds to the JNC-VI optimal blood pres-
sure category [11]. When 120 ≤ systolic BP < 130 or 80 ≤ diastolic BP < 85
the JNC-VI classified this as normal BP and when 130 ≤ systolic BP < 140
or 85 ≤ diastolic BP < 89 as borderline high BP [11]. However, these read-
ings are acknowledged as prehypertension according to the JNC-VII [11]. The
JNC-VI and VII label systolic BP ≥ 140 or diastolic BP ≥ 140 as hyperten-
sion [11]. Moreover, hypertension can be further categorized into levels/stages
of hypertension based on different interval readings [6, 11]. For instance, the
JNC-VI claims that hypertension can be broken down into three stages, the
JNC-VII claims two stages, and Wilson, Agostino, et al. state that when
systolic BP ≥ 160 or diastolic BP ≥ 100 this defines stages II-IV hyperten-
sion [6, 11]. According to the JNC-VI stage I hypertension is present when
140 ≤ systolic BP < 160 or 90 ≤ diastolic BP < 100, stage II hypertension is
present when 160 ≤ systolic BP < 180 or 100 ≤ diastolic BP < 110, and stage
III hypertension when systolic BP ≥ 180 or diastolic BP ≥ 110 [11]. And, ac-
cording to the JNC-VII, the definition of stage I hypertension remains the same
as the JNC-VI definition [11]. However, the JNC-VII combines the JNC-VI
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definitions of stage II and stage III hypertension into just stage II hypertension
[11].

Like using BMI to classify patients who are overweight, obese, or rank in a
different obesity stage, it is also difficult to label what “kind” of smoker someone
is. Schane, Ling, and Glance illustrate this idea by discussing that the action of
smoking less than one pack of cigarettes per day, smoking 1 - 39 cigarettes per
week, less than ten cigarettes per day, less than 15 cigarettes per day have all
been considered as levels of cigarette consumption that classify cigarette smokers
as “light smokers” [12]. However, they do claim that cardiovascular disease risk
levels remain about the same when comparing the habit of daily smoking with
the actions of light and intermittent smoking [12]. Finally, they also consider
heavy smoking to be consuming twenty-three or more cigarettes and light smok-
ing to be consuming anywhere in between four and seven cigarettes per day im-
plying that moderate smoking can be defined as 7 <Cigarettes smoked day< 23
according to their work [12]. Aside from just advancing age being an absolute
short-term risk factor for CHD the National Cholesterol Education Program
(NCEP) Expert Panel on Evaluation, Detection, and Treatment of High Blood
Cholesterol in Adults (ATP III) have concluded that age can further be decom-
posed into sex-specific risk factor categories [13]. NCEP ATP III claims that
being male and forty-five years of age or older is a major risk factor for CHD de-
velopment [13]. Additionally, being female and fifty-five years of age and older
[13]. Both being risks that exclude LDL-C [13].

It is easy to see that there are many risk factors of CHD and certain levels,
or categories, of these risk factors as well that have yet to be well-defined most
likely due to new findings in observational studies and research. Finally, Grundy,
Pasternak, et al. state that the probability of oneself developing CHD over a
given period of time is the definition of absolute risk [7]. Moreover, they state
that if the given time period is 10 years or less, then the probability of oneself
developing CHD within this timeframe is called the absolute short-term risk of
CHD development [7]. In this paper, we wish to predict absolute short-term
risk of CHD development.

Explanation of the Data Source, Variables, and
Data Clean Up

We obtained a data set from Kaggle.com. The URL is https://www.kaggle.com/dileep070/heart-
disease-prediction-using-logistic-regression [14]. And in fact, this data set has
4240 records and fifteen variables each containing medical visit information for
people living in the city of Framingham, Massachusettes and is also part of a
longstanding cardiovascular study which began in 1948 and formally called the
“Framingham Heart Study” [14, 15, 16]. The National Heart, Lung, and Blood
Institute (as of 1976) was the organization that administered and organized the
study [15, 16]. Moreover, the observational subjects who were recruited for this
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study were supposedly absent of heart disease symptoms at the time of recruit-
ment [15]. The Framingham Heart study was designed to track each patient, of
whom had not endured either stroke or heart attack, during long time periods
in hopes to uncover what may be common conditions or features that promote
cardiovascular disease [15]. In this project, we use this data set and create a
new data set to analyze that is dim = 4142× 35. The 19 new variables given a
binary coding to represent various conditions that the patient could have. The
new variables have been coded with the help of Excel. We load the new data set
into R and clean it up a little using the program. The code is provided below.

> CHD.Data <- read.csv("CHD.Data.csv", header = T, sep = ",")

> # The dimension of the data matrix is

>

> dim(CHD.Data)

[1] 4240 38

> # and it contains

> missing.observations <- sum(is.na(CHD.Data))

> missing.observations

[1] 645

> # incomplete observations on thirty-eight variables.

>

> # The names of the variables are

>

> names(CHD.Data)

[1] "male" "age" "Age.Risk.Women"

[4] "Age.Risk.Men" "education" "Heavy.Smoker"

[7] "Moderate.Smoker" "Light.Smoker" "currentSmoker"

[10] "cigsPerDay" "BPMeds" "prevalentStroke"

[13] "prevalentHyp" "diabetes" "Borderline.High.TC"

[16] "Very.High.TC." "totChol" "High.sys.BP"

[19] "High.dia.BP" "High.BP" "Hyper.sys.BP"

[22] "Hyper.dia.BP" "Hypertension" "Advanced.Hyper.sys"

[25] "Advanced.Hyper.dia" "Advanced.Hypertension" "sysBP"

[28] "diaBP" "Normal.Body.Weight" "Overweight"

[31] "Obesity" "ClassOne.Obesity" "ClassTwo.Obesity"

[34] "ClassThree.Obesity" "BMI" "heartRate"

[37] "glucose" "TenYearCHD"

>

> # where male (column 1), age (column 2), education (column 5),

> # currentSmoker (column 9), cigsPerDay (column 10), BPMeds (column 11),

> # prevalentStroke (column 12), prevalentHyp (column 13), diabetes
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> # column(14), totChol (column 17), sysBP (column 27) , diaBP (column 28),

> # BMI (column 35), heartRate (column 36), glucose (column 37), and

> # TenYearCHD (column 38) are all part of the original data set. The rest

> # are categorical variables that have been given a binary coding that

> # represents certain medical conditions the patient does or does not

> # have using the information contained in the variables from

> # the original data set.

> # Our goal is to preseve as much data from the original data set as we

> # can. So we next identify missing values in the original sample

> # (we do not look at calculated variables here) by doing the following

>

> v1 <- sum(is.na(CHD.Data[,1])) # Total missing values in male.

> v2 <- sum(is.na(CHD.Data[,2])) # Total missing values in age.

> v5 <- sum(is.na(CHD.Data[,5])) # Total missing values in education.

> v9 <- sum(is.na(CHD.Data[,9])) # Total missing values in currentSmoker.

> v10 <- sum(is.na(CHD.Data[,10])) # Total missing values in cigsPerDay.

> v11 <- sum(is.na(CHD.Data[,11])) # Total missing values in BPMeds.

> v12 <- sum(is.na(CHD.Data[,12])) # Total missing values in prevalentStroke.

> v13 <- sum(is.na(CHD.Data[,13])) # Total missing values in prevalentHyp.

> v14 <- sum(is.na(CHD.Data[,14])) # Total missing values in diabetes.

> v17 <- sum(is.na(CHD.Data[,17])) # Total missing values in totChol.

> v27 <- sum(is.na(CHD.Data[,27])) # Total missing values in sysBP.

> v28 <- sum(is.na(CHD.Data[,28])) # Total missing values in diaBP.

> v35 <- sum(is.na(CHD.Data[,35])) # Total missing values in BMI.

> v36 <- sum(is.na(CHD.Data[,36])) # Total missing values in heartRate.

> v38 <- sum(is.na(CHD.Data[,37])) # Total missing values in glucose.

> # The number of missing observations in each variable are

>

> variable.name <- c("male", "age", "education", "currentSmoker",

+ "cigsPerDay", "BPMeds", "prevalentStroke",

+ "prevalentHyp", "diabetes", "totChol", "sysBP",

+ "diaBP", "BMI","hearRate", "glucose")

> missing.observations.in.variable <- c(v1,v2,v5,v9,v10,v11,v12,v13,v14,

+ v17,v27,v28,v35,v36,v38)

> missing.observations.by.variable <- as.matrix(

+ data.frame(variable.name, missing.observations.in.variable), byrow = TRUE )

> missing.observations.by.variable

variable.name missing.observations.in.variable

[1,] "male" " 0"

[2,] "age" " 0"

[3,] "education" "105"

[4,] "currentSmoker" " 0"

[5,] "cigsPerDay" " 29"

[6,] "BPMeds" " 53"
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[7,] "prevalentStroke" " 0"

[8,] "prevalentHyp" " 0"

[9,] "diabetes" " 0"

[10,] "totChol" " 50"

[11,] "sysBP" " 0"

[12,] "diaBP" " 0"

[13,] "BMI" " 19"

[14,] "hearRate" " 1"

[15,] "glucose" "388"

>

These R commands and functions have allowed us to identify all of the miss-
ing cases in each variable. For the purposes of exploring the effect of major risk
factors on absolute short-term coronary heart disease, we remove the variables
education, BPMeds, and heartRate. The variable cigsPerDay contains twenty-
nine missing values. We do not exactly know why this variable contains some
null values. However, we do need to leave it in our data set because the values
of cigsPerDay (which is the average number of cigarettes per day the patient
smokes) have been used in the construction of other categorical variables that
have been calculated by us. We do not remove totChol for the same reason.
On another note, we notice that the variable currentSmoker does not have any
null values. Since this is the case, we hypothesize about why there are missing
values in cigsPerDay. Some of them could of these hypotheses are:

� The patient is an intermittent smoker (they don’t smoke every day)

� They are trying to quit and during cessation they became labeled as an
intermittent smoker

� They have recently quit. However, they have not been smoke-free long
enough to be labeled as a non-smoker

. Similarly, we don’t know exactly why the variables BPMeds, BMI, heartRate,
and glucose have null values. We are not interested in quantifying the effect of
blood pressure medication on absolute short-term CHD risk. We avoid these
missing cases by simply removing the BPMeds from our data set. Finally,
we do not know exactly why there are some missing measurements of BMI,
heartRatem, and glucose. However, we do not use any estimation method that
can be used to fill in null values. Finally, we remove glucose and rely on the
dummy variable diabetes to represent the diabetes mellitus risk factor rather
than glucose measurements. We also eliminate heartRate.

> Cleaned.CHD.Data <- na.omit(data.frame(CHD.Data[,-c(5,11,37)]))

> # Dimensions of the new data matrix

>

> dim(Cleaned.CHD.Data)
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[1] 4142 35

> # Number of complete cases

>

> sum(complete.cases(Cleaned.CHD.Data))

[1] 4142

> # Number of missing cases

>

> sum(is.na(Cleaned.CHD.Data))

[1] 0

Data Visualization: Exploring the Relationship
between the Logit Form of the Model and
Categorical and Continuous Predictors

The logistic regression model is a parametric learning method that assumes
there is a linear relationship between the logit form of the logistic regression
model and predictor(s) [1, 2? ]. There are two elementary approaches that we
can use to assess whether or not the linearity assumption is met [1]. Moreover,
these two approaches are dependent upon the type of data that comprises the
predictor(s) [1]. As we stated before, if the predictor variable(s) are categorical
linearity will be automatic [1]. When the predictor(s) are continuous, assessing
the linearity assumption becomes a little more involved. In either case, we need
an estimator for ln( p

1−p . We refer to this estimator as the empirical logit which
is part of the empirical logit plot that is used to verify if whether or not the
linearity assumption is met [1].

Case I: Epirical Logit Plots for Categorical Predictors

When the predictor is categorical, or coded in binary, the goal is to find
an estimator for p and 1 − p in each level/category of the predictor [1]. For
example, suppose we consider the variable currentSmoker. The coding scheme
for current smoker is

currentSmoker =

{
1, the patient is a current smoker

0, the patient is not a current smoker

We have already discussed odds in this paper. But these odds are in terms
of the logistic regression model (3). However, (3) is currently unknown to us
because we do not know what the βs are. Let ps be the probability of success
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(being labeled with absolute short-term CHD risk) for smoking patients. Let
pn′ be the probability of success (being labeled with absolute short-term CHD
risk) and a non-smoker. Then using the information in our data matrix we
estimate these probabilities and compute empirical logit values of absolute short-
term CHD risk for smokers and non-smokers which are ln( p̂s

1−p̂s
) and ln( ˆpn′

1− ˆpn′
)

respectively. However, we do not use probabilities to obtain empirical logit
values for each level of currentSmoker. The approach is to count how many
smokers are in currentSmoker and how many non-smokers are in currentSmoker
that are labeled with and without absolute short-term risk of CHD development.
Let ts and tn′ be the number of smokers and non-smokers without absolute short-
term CHD risk respectively. Then, let rs and rn′ be the number of smokers
and non-smokers who have an absolute short-term risk of CHD respectively.
The empirical logit values for smokers and non-smokers are then ln( rs

ts+rs
) and

ln( rn′
tn′+rn′

). So the estimators of ps and pn′ are sample proportions. For more

information on computing empirical logit values for categorical predictors see
STAT2: building models for a world of data by Cannon, Cobb, et al. We next
produce an empirical logit plot for the variable currentSmoker.

> library(dplyr)

> # The number of smokers with absolute short-term CHD Risk is

> Cleaned.CHD.Data %>%

+ filter(currentSmoker == 1 & TenYearCHD == 1) %>%

+ select(currentSmoker, TenYearCHD) %>%

+ summarise(sumsmoke = sum(currentSmoker))

sumsmoke

1 322

> # The number of smokers without absolute short-term CHD Risk is

>

> Cleaned.CHD.Data %>%

+ filter(currentSmoker == 1 & TenYearCHD == 0) %>%

+ select(currentSmoker, TenYearCHD) %>%

+ summarise(nonsmoker = sum(currentSmoker))

nonsmoker

1 1705

> # The number of non-smokers with absolute short-term CHD Risk

> Cleaned.CHD.Data %>%

+ filter(currentSmoker == 0 & TenYearCHD == 1) %>%

+ select(currentSmoker, TenYearCHD) %>%

+ summarise(sum_non_CHD = sum(TenYearCHD))

sum_non_CHD

1 300
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> # The number of non-smokers without CHD Risk is

> Cleaned.CHD.Data %>%

+ filter(currentSmoker == 0, TenYearCHD == 0) %>%

+ select(currentSmoker) %>%

+ summarise(count.non.smoker = n())

count.non.smoker

1 1815

> # As a check

> 322 + 1705 + 300 + 1815

[1] 4142

> # The empirical logit value is computed with the following

>

> r_s <- 322 # Number of smokers with absolute short-term CHD risk

> t_s <- 1705 # Number of smokers without absolute short-term CHD risk

> r_non <- 300 # Number of non-smokers with absolute short-term CHD risk

> t_non <- 1815 # Number of non-smokers without absolute short-term CHD risk

> # Then the empirical logit values are

>

> empirical.logit.smokers <- log(r_s/(r_s + t_s), base = exp(1))

> empircal.logit.non.smokers <- log(r_non/(t_non + r_non), base = exp(1))

> currentSmoker.levels <- c(0, 1)

> empirical.logit.values <- c(empircal.logit.non.smokers, empirical.logit.smokers)

>

>
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As we can see linearity is automatic for this type of variable.

Case II: Empirical Logit Plots for Continuous Variables

We have produced an empirical logit plot to examine the relationship be-
tween the empirical logit and currentSmoker variable in our data set. Here we
produce an empirical logit plot for the continuous age variable. To produce an
empirical logit plot for any continuous variable we follow the steps below:

I. Identify the sample size, sort the values of the predictor in ascending
order, and then break the sorted values of the predictor into i∗ = 1, 2, ..., a
intervals. Each interval containing about an equal number of observations
ui∗

II. Then compute 1
ui∗

∑ui∗
vi∗=1Xk,vi∗ for predictor k in interval i∗. I.e., the

sample mean of the organized continuous information in predictor k that
lies in interval i∗ which contains vi∗ = 1, 2, ..., ui∗ observations

III. Compute the observed proportion of successes in each interval i∗. Let the
proportion of successes in interval i∗ be p̂i∗ . p̂i∗ = 1

ui∗

∑ui∗
vi∗=1 Yvi∗ where

the values of Yvi∗ are either 0 or 1 in each interval

IV. Compute ln( ˆpi∗
1− ˆpi∗

) for each i∗
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V. Construct the empirical logit plot for the continuous predictor. This is a
scatter plot of ln( ˆpi∗

1− ˆpi∗
) vs. 1

ui∗

∑ui∗
vi∗=1Xk,vi∗ for each i∗. I.e., ordered

pairs ( 1
ui∗

∑ui∗
vi∗=1Xk,vi∗ , ln( ˆpi∗

1− ˆpi∗
))

[1]. These instructions are a very “mathematized” version of the approach given
by Cannon Cobb, et al. in STAT2: Building Models for a World of Data.
One final note, when n is large it is beneficial to have a ≥ 3 in order to obtain
insight on any departure of linearity, direction, and magnitude of the relationship
between the empirical logit and the continuous predictor [1]. We produce an
empirical logit plot for the age variable using R below. Code is provided to show
how we create the plot.

> # Sort the information in age in ascending

> sorted.age <- order(Cleaned.CHD.Data$age, decreasing = FALSE)

> sorted.CHD.Data <- Cleaned.CHD.Data[sorted.age,]

> m1 <- mean(sorted.CHD.Data[1:518,2])

> m2 <- mean(sorted.CHD.Data[519:1037,2])

> m3 <- mean(sorted.CHD.Data[1038:1556,2])

> m4 <- mean(sorted.CHD.Data[1557:2074,2])

> m5 <- mean(sorted.CHD.Data[2075:2593,2])

> m6 <- mean(sorted.CHD.Data[2594:3112,2])

> m7 <- mean(sorted.CHD.Data[3113:3631,2])

> m8 <- mean(sorted.CHD.Data[3632:4142,2])

> p1 <- (sum(sorted.CHD.Data[1:518, 35]) )/(length(sorted.CHD.Data[1:518,35]))

> p2 <- (sum(sorted.CHD.Data[519:1037,35]) )/(length(sorted.CHD.Data[519:1037,35]))

> p3<-(sum(sorted.CHD.Data[1038:1556,35]) )/(length(sorted.CHD.Data[1038:1556,35]))

> p4<-(sum(sorted.CHD.Data[1557:2074,35]) )/(length(sorted.CHD.Data[1557:2074,35]))

> p5<-(sum(sorted.CHD.Data[2075:2593,35]) )/(length(sorted.CHD.Data[2075:2593,35]))

> p6<-(sum(sorted.CHD.Data[2594:3112,35]) )/(length(sorted.CHD.Data[2594:3112,35]))

> p7<-(sum(sorted.CHD.Data[3113:3631,35]) )/(length(sorted.CHD.Data[3113:3631,35]))

> p8<-(sum(sorted.CHD.Data[3632:4142,35]) )/(length(sorted.CHD.Data[3632:4142,35]))

> l1 <- log(p1, base = exp(1))/(1 - log(p1, base = exp(1)))

> l2 <- log(p2, base = exp(1))/(1 - log(p2, base = exp(1)))

> l3 <- log(p3, base = exp(1))/(1 - log(p3, base = exp(1)))

> l4 <- log(p4, base = exp(1))/(1 - log(p4, base = exp(1)))

> l5 <- log(p5, base = exp(1))/(1 - log(p5, base = exp(1)))

> l6 <- log(p6, base = exp(1))/(1 - log(p6, base = exp(1)))

> l_7 <- log(p7, base = exp(1))/(1 - log(p7, base = exp(1)))

> l8 <- log(p8, base = exp(1))/(1 - log(p8, base = exp(1)))

> Interval.means <- c(m1,m2,m3,m4,m5,m6,m7, m8)

> Interval.logit <- c(l1,l2,l3,l4,l5,l6,l_7, l8)

> plot(x = Interval.means, y = Interval.logit,

+ xlab = "Interval Mean of age", ylab = "Log-odds of age",

+ main = "Empirical Logit Plot of the age Variable",

+ col = "blue", pch = 21, bg = "blue", col.lab = "blue",

+ col.axis = "blue", col.main = "blue")
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The relationship between the empirical logit and the age variable shows a strong
linear relationship. Additionally, the above code can be manipulated slightly to
produce empirical logit plots for other continuous predictors in our data matrix.
If one produces empirical logit plots for the variables cigsPerDay, sysBP, and
diaBP in this data set, you will be able to verify that the relationship between
these variables and their empirical logits is linear. The relationship between
the BMI and the empirical logit is linear. But the relationship is weak. Each
empirical logit plot was produced using eight intervals.

Predicting Absolute Short-Term CHD Risk Using
Logistic Regression

In this section we model the probability of being labeled with absolute short-
term risk of CHD by fitting and interpreting two kinds of multiple logistic re-
gression models. Models with only categorical independent variables and models
containing both continuous and categorical independent variables. Moreover, we
select variables to include in each model based upon our research findings in the
previous section titled “Definition of Coronary Heart Disease (CHD) and Ma-
jor Risk Factors and Conditions” without utilizing variable selection methods
(variable selection methods are discussed later). Additionally, we pick combi-
nations of variables we think should include in our models such that each of
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our choosings will not cause multicollinearity issues. For example, one may hy-
pothesize that there is strong relationship between diastolic and systolic blood
pressure. I.e., the variables are dependent upon each other. Since this is the
case, it is likely that including both of these variables in any logistic regression
model, or categorical variables that represent both types of blood pressure, will
likely cause multicollinearity issues. For a thorough discussion of collinearity
and multicollinearity see “Applied Linear Regression” second edition by Sanford
Weisberg.

Model I: Modeling with Continuous and Categorical Predictors

According to our research, we have seen that some of the major risk factors of
CHD are advancing age, sex-specific advancing age, various levels of BMI, being
diabetic, and smoking. Let’s model absolute short-term risk of CHD risk for
patients using the risk factors mentioned in the previous sentence. To present
model nicely, we let age = X.1, male = X.2 (X.2 = 1 if patient is male. X.2 = 0
is female), BMI = X.3, diabetes = X.4 (X.4 = 1 if the patient is diabetic.
X.4 = 0 if the patient is not), Light.Smoker = X.5 (X.5 = 1 if the patient
is a light smoker. X.5 = 0 if the patient is not), Moderate.Smoker = X.6
(X.6 = 1 if the patient is a moderate smoker. X.6 = 0 if the patient is not),
and Heavy.Smoker = X.7 (X.7 = 1 if the patient is a heavy smoker. X.7 = 0
if the patient is not), and have p1 be the probability of labeling a patient with
absolute short-term risk of CHD with this model. So our model can be written
as

ln(
p1

1− p1
) = β0+β1X.1+β2X.2+β3X.3+β3X.3+β4X.4+β5X.5+β6X.6+β7X.7

. We use R to fit the model. Code is provided below.

> attach(Cleaned.CHD.Data)

> CHD.df.1 <- data.frame(age, male, BMI, diabetes,

+ Light.Smoker, Moderate.Smoker, Heavy.Smoker, TenYearCHD)

> colnames(x = CHD.df.1) <- c("X.1", "X.2", "X.3", "X.4",

+ "X.5", "X.6", "X.7", "Risk")

> Model.I <- glm(Risk ~. , data = CHD.df.1, family = binomial)

> # The family argument tells the glm function the response we are modeling

> # is a binomial response.

>

> summary(Model.I)

Call:

glm(formula = Risk ~ ., family = binomial, data = CHD.df.1)

Deviance Residuals:

Min 1Q Median 3Q Max
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-1.4180 -0.6050 -0.4430 -0.3138 2.6683

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.364189 0.435012 -16.929 < 2e-16 ***

X.1 0.083053 0.005748 14.448 < 2e-16 ***

X.2 0.410093 0.096110 4.267 1.98e-05 ***

X.3 0.034548 0.011003 3.140 0.001691 **

X.4 0.784731 0.219410 3.577 0.000348 ***

X.5 -0.023000 0.190619 -0.121 0.903961

X.6 0.433897 0.111625 3.887 0.000101 ***

X.7 0.780114 0.148397 5.257 1.46e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3504.1 on 4141 degrees of freedom

Residual deviance: 3192.6 on 4134 degrees of freedom

AIC: 3208.6

Number of Fisher Scoring iterations: 5

. The only insignificant variable is X.5. All others are significant. The estimated
model in probability form is

p̂1 =
e(−7.364+0.083X.1+0.410X.2+0.035X.3+0.785X.4−0.023X.5+0.434X.6+0.780X.7)

1 + e(−7.364+0.083X.1+0.410X.2+0.035X.3+0.785X.4−0.023X.5+0.434X.6+0.780X.7)

. As we previously discussed in the section of this paper called “A Brief Discus-
sion of the Logistic Regression Model” we use the concept of probability to label
which category an observation Xn, or an unseen observation (not in the training
set), belongs to [? ]. When we use the model to label any observation based on
its feature values we label the observation as 1 if p1 > c and 0 otherwise where c
is a posterior probability threshold [? ]. There is no specific value of c that must
be used in a classification problem [? ]. In fact, depending on the application,
c can be varied to minimize model error rates or maximize rates at which it
correctly assigns observations to a certain class that are contained in Y [? ]. We
assess this model by producing and analyzing a receiver operating characteristics
curve (ROC curve) and compute the area under the curve for this model [? ].
Again R can help us do this and also return a probability threshold that yields
a maximized sensitivity and specificity. We produce a ROC curve and provide
code below.

> library(pROC)

> attach(CHD.df.1)
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> Model.I.probs <- predict(object = Model.I,

+ newdata = CHD.df.1,

+ type = "response")

> # Create a ROC curve using the entire sample

>

> par(pty = "s")

> Model.I.ROC <- roc(response = Risk,

+ predictor = Model.I.probs, percent = TRUE,

+ plot = TRUE, legacy.axes = TRUE,

+ ylab = "Sensitivity", col = "blue",

+ col.axis = "blue", col.lab = "blue",

+ col.main = "blue",

+ main = "ROC curve for Logistic Regression Model")

> Model.I.ROC$auc

Area under the curve: 71.53%

> coords(roc = Model.I.ROC, x = "best", best.method = "youden")

threshold specificity sensitivity

0.1289227 57.5284091 75.4019293

>

> # When x is set to "best" in the coords function, and best.method is set # to youden,

> # the coords function returns a posterior probability

> # threshold that maximizes the classifier's sensitivity and specificity.

>
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We see that the optimized sensitivity of this model is 75.40%, the optimized
specificity is 57.53%, and the area under the ROC curve is 71.53%. But this is
the training sensitivity and training specificity which is usually an overestimate
of these metrics [? ]. Also, we see that the probability threshold that maximizes
them is 0.1289227. So we use this threshold and a 50 − 50 split of the data to
estimate the test sensitivity, specificity, and accuracy.

> set.seed(16)

> CHD.df.1.train <- sample(x = 4142, size = 2071, replace = FALSE)

> CHD.df.1.test <- CHD.df.1[-CHD.df.1.train,]

> # Estimate the model on the training set

>

> train.set.Model.I <- glm(Risk ~. , data = CHD.df.1,

+ family = binomial,

+ subset = CHD.df.1.train)

> # Predict absolute short term risk of CHD on unseen cases

>

> Model.I.validation.probs <- predict(object = train.set.Model.I,

+ newdata = CHD.df.1.test,

+ type = "response")

> # Create a vector of labels and use probability

> # threshold to name successes

>
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>

> Model.I.validation.predictions <- rep(x = 0, times = 2071)

> Model.I.validation.predictions[Model.I.validation.probs >= 0.1289227] <- 1

> # Produce a confusion matrix

>

> table(Model.I.validation.predictions, CHD.df.1.test[,8])

Model.I.validation.predictions 0 1

0 982 86

1 786 217

>

>

The estimated test sensitivity is 100 ∗ ( 217
217+86 )% = 71.62%, the estimated test

specificity is 100 ∗ ( 982
982+786 )% = 55.54%, and the estimated test accuracy is

100 ∗ ( 217+982
2071 )% = 57.89%.

Model II: Modeling with Categorical Predictors

In this section, we build a model that uses all of the major risk factors
previously discussed. Furthermore, the variables we created have been given
a binary coding which represents various levels of each continuous risk factor.
E.g., X = 1 if 25 ≤ BMI < 29.9999 representing the condition of obesity and
X = 0 otherwise when the patient’s BMI doesn’t fall within this interval. For
this model, the variables are as follows:

� X.1 = 1 if the patient is male. X.1 = 0 if female.

� X.2 = 1 if the patient is female and 55 or older. X.2 = 0 if female and
younger than 55.

� X.3 = 1 if the patient is male and 45 or older. X.3 = 0 if male and
younger than 45.

� X.4 is the dummy variable that represents whether or not the patient is
a current smoker. X.4 = 1 if yes X.4 = 0 if they are not

� X.5 is the dummy variable that represents the presence of diabetes. It is
defined the same as in model I

� X.6 = 1 if the patient is overweight. X.6 = 0 if the patient has a BMI
that doesn’t fall into the definition of being overweight

� X.7 = 1 if the patient is obese. X.7 = 0 if the patient has a BMI that
doesn’t fall into the definition of being obese

� X.8 = 1 if the patient has borderline high total cholesterol. X.8 = 0 if
they do not
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� X.9 = 1 if the patient has very high total cholesterol. X.9 = 0 if they do
not

� X.10 = 1 if the patient has high systolic blood pressure. X.10 = 0 if they
do not

� X.11 = 1 if the patient has hypertensive systolic blood pressure X.11 = 0
if they do not.

� X.12 = 1 if the patient has advanced hypertensive systolic blood pressure.
X.12 = 0 if they do not

. For a further explanation of our dummy variable coding schemes please see the
project’s data dictionary available to view or download from the Wright Ana-
lytics website. Using R code that is similar to the code used to produce model I
we train model II on the entire data set. The summary of the logistic regression
output is provided below along with a confusion matrix. The distribution of the
data in the test and training set used to produced the confusion matrix is again
a 50-50 split.

Call:

glm(formula = Risk ~ ., family = binomial, data = CHD.df.2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3602 -0.6166 -0.4126 -0.3251 2.5423

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.19146 0.16099 -19.823 < 2e-16 ***

X.1 0.20430 0.17440 1.171 0.241410

X.2 1.01229 0.14131 7.164 7.86e-13 ***

X.3 1.05411 0.15897 6.631 3.34e-11 ***

X.4 0.32526 0.09689 3.357 0.000788 ***

X.5 0.77409 0.21963 3.525 0.000424 ***

X.6 0.04403 0.10345 0.426 0.670382

X.7 0.17214 0.14204 1.212 0.225558

X.8 0.17191 0.14313 1.201 0.229706

X.9 0.27766 0.13874 2.001 0.045362 *

X.10 0.24208 0.13329 1.816 0.069327 .

X.11 0.59873 0.12176 4.917 8.78e-07 ***

X.12 1.03788 0.13689 7.582 3.40e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 3504.1 on 4141 degrees of freedom

Residual deviance: 3188.6 on 4129 degrees of freedom

AIC: 3214.6

Number of Fisher Scoring iterations: 5

Area under the curve: 71.59%

threshold specificity sensitivity

0.178634 71.590909 60.932476

Model.II.validation.predictions 0 1

0 1254 143

1 495 179

The estimated sensitivity of the model using the validation set approach with a
50-50 split is 100 ∗ ( 179

179+143 )% = 55.56% which is significantly smaller than the
training sensitivity obtained which is 60.93%. Notice that the conditional prob-
ability threshold for this model is much bigger than the conditional probability
threshold for model I. Again, there is no one conditional probability threshold
that must be used. If we were to use the conditional probability threshold from
model I with model II the estimated sensitivity is

Model.II.validation.predictions 0 1

0 1017 92

1 732 230

100∗( 230
230+92 )% = 71.43%. On another topic, model II has many more predictor

coefficients that have not been found to be significantly different from zero.
Does this mean that these risk factor categories have no impact on absolute
short-term CHD risk for a patient? No. Probably not. However, we do not
have enough numerical evidence that they are significantly different from zero.
Thus, it makes no sense to interpret them.

Model III: A Well-Balanced Model

In this section, we model the event of patients being labeled with absolute
short-term CHD risk with a logistic regression model that contains continuous
and categorical predictors. The independent variables we include are male =
X.1, age = X.2, Age.Risk.Men = X.3, Age.Risk.Women = X.4, BMI =
X.5, and diabetes = X.6, Light.Smoker = X.7, Moderate.Smoker = X.8,
Heavy.Smoker = X.9, cigsPerDay = X.10, and sysBP = X.11. Using R, the
summary of the model is

Call:

glm(formula = Risk ~ ., family = binomial, data = CHD.df.3)

Deviance Residuals:
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Min 1Q Median 3Q Max

-1.5345 -0.5994 -0.4203 -0.2932 2.8073

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.679131 0.550285 -13.955 < 2e-16 ***

X.1 0.352412 0.184522 1.910 0.05615 .

X.2 0.054380 0.009272 5.865 4.49e-09 ***

X.3 0.358607 0.205415 1.746 0.08085 .

X.4 0.304328 0.183371 1.660 0.09699 .

X.5 0.006854 0.011636 0.589 0.55583

X.6 0.702127 0.222306 3.158 0.00159 **

X.7 -0.071963 0.197078 -0.365 0.71500

X.8 0.223370 0.232861 0.959 0.33744

X.9 0.329608 0.440297 0.749 0.45410

X.10 0.012323 0.012086 1.020 0.30794

X.11 0.017228 0.002123 8.116 4.83e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3504.1 on 4141 degrees of freedom

Residual deviance: 3120.5 on 4130 degrees of freedom

AIC: 3144.5

Number of Fisher Scoring iterations: 5

. The area under the ROC curve is

Area under the curve: 73.4%

threshold specificity sensitivity

0.1592199 69.6022727 67.3633441

73.40% which is an improvement compared to model I and II in terms of this
metric. Additionally, we see that a posterior probability threshold of 0.1592199,
that optimizes sensitivity, returns a training sensitivity of 67.36% but also a
training specificity of 69.60%. Specificity is the rate at which the model labels
true events of failure as events of failure. A confusion matrix for this model,
using a 50-50 split, is

Model.III.validation.predictions 0 1

0 1242 124

1 507 198

. The estimated test sensitivity is 100 ∗ ( 198
198+124 )% = 61.49%. The estimated

test specificity is 100 ∗ ( 1242
1242+507 )% = 71.01%. The estimated error rate using
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this threshold is 100 ∗ (1− 1242+198
2071 )% = 30.47%. Since the training sensitivity

and specificity are well balanced, the AUC of the ROC curve is higher compared
to models I and II, and the estimated test sensitivity is lower than the training
sensitivity we conclude that model III is a well-balanced model despite the fact
that there may be slight collinearity issues present. This is seen by the negative
slope for Light.Smoker.

In this section, we trained three logistic regression models that contained
various combinations of variables that represented major risk factors of CHD.
The model that had the highest estimated test sensitivity was model I. The area
under model III’s ROC curve was the largest. Moreover, we decided that model
three was well balanced because there was no significant difference between its
training specificity and sensitivity. Also, its training accuracy is 69.53%.

Feature Selection for the Logistic Regression Model

In the section “Predicting Absolute Short-Term CHD Risk Using Logistic
Regression” we built three models using predictor variables that we hand-picked
based on our research findings. We engineered some of these variables to repre-
sent certain levels of major CHD risk factors (e.g., we coded categorical variables
to represent certain patient conditions such as being overweight or obese). The
data set that we have been analyzing has thirty-four variables that we can con-
sider adding to logistic regression models to model the probability of Y = 1.
How do we know if we included the most relevant variables in the models we fit
in the previous section? We don’t. We made an educated guess what variables
should be included in the model based on our research findings. Since we have
many variable options, we discuss feature selection (variable selection) methods
in this section and apply it to this application to see if we can uncover a more
effective model compared to the ones that we have already obtained. One algo-
rithm we can use is the Boruta Algorithm. We do not explain how this algorithm
performs feature selection in-depth because the explanation is beyond the scope
of this paper. We provide R code for the Boruta algorithm below.

> # Implementation of the Boruta Algorithm for feature selection

> library(Boruta)

> Boruta.Search <- Boruta(TenYearCHD ~., data = Cleaned.CHD.Data,

+ doTrace = 0, pValue = 0.01)

>

> Boruta.Search.Significants <- getSelectedAttributes(x = Boruta.Search, withTentative = F)

> # List the significant variables using a significance level of 0.01

>

> print(Boruta.Search.Significants)

[1] "age" "Age.Risk.Women" "Age.Risk.Men"

[4] "Heavy.Smoker" "cigsPerDay" "prevalentHyp"
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[7] "diabetes" "Very.High.TC." "totChol"

[10] "High.BP" "Hyper.sys.BP" "Hyper.dia.BP"

[13] "Hypertension" "Advanced.Hyper.sys" "Advanced.Hyper.dia"

[16] "Advanced.Hypertension" "sysBP" "diaBP"

[19] "Overweight" "Obesity" "BMI"

> # Use R to uncover and return variable importance from the search

>

> Boruta.Var.Importance.1 <- attStats(x = Boruta.Search)

> Boruta.Var.Importance.2 <- Boruta.Var.Importance.1[Boruta.Var.Importance.1$decision != c('Rejected'), c('meanImp', 'decision')]

> # Return importances in data frame

>

> Boruta.Var.Importance.2[order(-Boruta.Var.Importance.2$meanImp,

+ decreasing = FALSE),

+ ]

meanImp decision

sysBP 22.679823 Confirmed

diaBP 20.755834 Confirmed

age 18.391570 Confirmed

prevalentHyp 13.992514 Confirmed

totChol 9.619838 Confirmed

BMI 9.321212 Confirmed

Advanced.Hypertension 8.996512 Confirmed

Hypertension 8.787567 Confirmed

Advanced.Hyper.sys 8.169908 Confirmed

diabetes 6.965158 Confirmed

Age.Risk.Men 6.892927 Confirmed

Advanced.Hyper.dia 6.330359 Confirmed

Hyper.sys.BP 6.292310 Confirmed

cigsPerDay 6.269478 Confirmed

Very.High.TC. 5.762492 Confirmed

Age.Risk.Women 5.752920 Confirmed

Obesity 4.319457 Confirmed

Heavy.Smoker 4.095624 Confirmed

Hyper.dia.BP 3.961423 Confirmed

Overweight 3.278796 Confirmed

High.BP 3.187701 Confirmed

Normal.Body.Weight 3.168324 Tentative

male 2.671110 Tentative

heartRate 2.653958 Tentative

ClassOne.Obesity 2.437533 Tentative

High.sys.BP 2.221297 Tentative

Moderate.Smoker 1.856407 Tentative

> # Perform variable importance search on a full model and return variable importance to

> # get an idea of what should be kept in the model
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> library(caret)

> library(arm)

> library(VGAM)

> set.seed(100)

> # Method is bayesglm for regression and classification

> model.full <- train(TenYearCHD ~., data = Cleaned.CHD.Data,

+ method = "bayesglm")

> model.importance <- varImp(model.full)

> print(model.importance)

loess r-squared variable importance

only 20 most important variables shown (out of 34)

Overall

age 100.000

sysBP 88.396

prevalentHyp 58.443

Age.Risk.Men 49.723

Advanced.Hyper.sys 45.188

Advanced.Hypertension 42.903

diaBP 40.320

Advanced.Hyper.dia 32.631

Age.Risk.Women 19.795

male 16.300

diabetes 15.538

Hypertension 14.947

totChol 14.320

BMI 13.054

Hyper.sys.BP 11.195

Normal.Body.Weight 9.230

Very.High.TC. 8.578

Hyper.dia.BP 7.640

cigsPerDay 7.251

Heavy.Smoker 6.752

>

The Boruta search Algorithm returns 22 variables and labels them as confirmed
meaning that we should consider adding some or all of them in a logistic regres-
sion model. The variable importance method returns fifteen variables that have
importance rankings above the value of 10. Moreover, twenty of the most im-
portant variables out of thirty-four that we should consider adding in a logistic
regression model. Next, we fit two models using variable selection recommen-
dations obtained by using these selection methods. One model aims to be an
improvement of model III. It contains the original variables contained in model
III and other significant/relevant variables the selection methods recommended.
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The second model we train in this section contains mostly categorical variables
which are recommended as most relevant/significant. Note, both methods are
supervised search methods because we have specified that TenYearCHD de-
pends on the remaining variables in R. Note, we have renamed TenYearCHD as
Risk in the previous models and continue to use this name for the dependent
variable. The models are found below along with their AUCs and confusion
matrices computed using a 50-50 split.

For the first model, the one that aims to improve model III, the subset
of variables is as follows: male = X.1, age = X.2, Age.Risk.Men = X.3,
Age.Risk.Women = X.4, BMI = X.5, diabetes = X.6, cigsPerDay = X.7,
currentSmoker = X.8, sysBP = X.9, prevalentHyp = X.10, totChol = X.11,
and prevalentStroke = X.12. The estimated model using all of the data is

Call:

glm(formula = Risk ~ ., family = binomial, data = CHD.df.4)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4021 -0.5978 -0.4150 -0.2879 2.7961

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.651663 0.632726 -12.093 < 2e-16 ***

X.1 0.354895 0.185473 1.913 0.055689 .

X.2 0.053010 0.009300 5.700 1.20e-08 ***

X.3 0.361367 0.205614 1.758 0.078832 .

X.4 0.265776 0.183617 1.447 0.147771

X.5 0.003468 0.011700 0.296 0.766943

X.6 0.713541 0.221758 3.218 0.001292 **

X.7 0.020536 0.005786 3.549 0.000387 ***

X.8 0.046869 0.147553 0.318 0.750756

X.9 0.014065 0.002737 5.139 2.76e-07 ***

X.10 0.197996 0.127667 1.551 0.120929

X.11 0.002011 0.001040 1.933 0.053203 .

X.12 0.901467 0.464089 1.942 0.052083 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3504.1 on 4141 degrees of freedom

Residual deviance: 3111.8 on 4129 degrees of freedom

AIC: 3137.8

Number of Fisher Scoring iterations: 5
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. Next, we compute the optimal threshold, area under the ROC curve, and a
confusion matrix for this model using a 50-50 split (50-50 split for the matrix
only).

threshold specificity sensitivity

0.141433 64.034091 73.311897

Area under the curve: 73.67%

Model.IV.validation.predictions 0 1

0 1193 88

1 591 199

For the second model, the subset of variables is as follows: male = X.1,
age = X.2, Age.Risk.Men = X.3, Age.Risk.Women = X.4, prevalentHyp =
X.5, prevalentStroke = X.6, Advanced.Hyper.sys = X.7, Hyper.sys.BP =
X.8, High.sys.BP = X.9, Normal.Body.Weight = X.10, Overweight =
X.11, Obesity = X.12, Borderline.High.TC = X.13, V ery.High.TC = X.14,
currentSmoker = X.15, and cigsPerDay = X.16. The estimated model using
all of the data is

Call:

glm(formula = Risk ~ ., family = binomial, data = CHD.df.5)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3933 -0.6074 -0.4167 -0.2943 2.6844

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.552745 0.616934 -9.001 < 2e-16 ***

X.1 0.345256 0.185970 1.857 0.063381 .

X.2 0.057194 0.009228 6.198 5.73e-10 ***

X.3 0.344265 0.205264 1.677 0.093508 .

X.4 0.271847 0.183012 1.485 0.137437

X.5 0.344108 0.140827 2.443 0.014547 *

X.6 0.905795 0.465361 1.946 0.051602 .

X.7 0.613548 0.185126 3.314 0.000919 ***

X.8 0.259594 0.158692 1.636 0.101874

X.9 0.148136 0.136917 1.082 0.279278

X.10 -0.214673 0.428971 -0.500 0.616767

X.11 -0.138515 0.430235 -0.322 0.747490

X.12 -0.036071 0.441580 -0.082 0.934897

X.13 0.124484 0.144687 0.860 0.389589

X.14 0.202399 0.140125 1.444 0.148621

X.15 0.036308 0.146957 0.247 0.804857
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X.16 0.020568 0.005770 3.565 0.000364 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3504.1 on 4141 degrees of freedom

Residual deviance: 3140.2 on 4125 degrees of freedom

AIC: 3174.2

Number of Fisher Scoring iterations: 5

. Next, we compute the optimal threshold, area under the ROC curve, and a
confusion matrix for this model using a 50-50 split (50-50 split for the matrix
only).

threshold specificity sensitivity

0.1695275 70.7954545 64.4694534

Area under the curve: 72.89%

Model.V.validation.predictions 0 1

0 1304 140

1 432 195

Discussion

In this paper we gave a brief discussion of the logistic regression model, listed
major CHD risk factors, provided a history of the Framingham Heart study and
data set components, conducted data visualization, provided routines for cre-
ating empirical logit plots for continuous and categorical predictors, estimated
models, analyzed ROC curves and confusion matrices, and finally, performed
variable selection and fit models on subsets of those recommendations. Model
I was fit considering most major CHD risk factors. However, it does not ac-
count for the additional impact of being female and fifty years and older or
male and forty-five years and old. It also ignores cholesterol level. Models II
and III consider all major risk factors. The models we fit later consider all
major risk factors represented by a combination of continuous and categorical
variables (the models we fit after making use of the Boruta search algorithm
and variable importance to aid us in variable selection). Moreover, these mod-
els incorporate patient medical history since prevalentHyp and prevalentStroke
are independent variables in both. We then estimated test accuracy, sensitivity
and specificity for models I, II, and III using the validation set approach with
50-50 splits. These rates we found using a posterior probability threshold that
optimized model sensitivity and specificity. However, these thresholds did vary
for each model. In the remainder of this section, we compute AUCs for each
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model using validation sets to make a final choice on which model we wish to
choose to model absolute short-term CHD risk for the population of Framing-
ham, Massachusettes. The AUCs under the ROC curves for model I, model II,
model III, model IV, and model V computed on validation sets containing 2071
test observations are shown belown in order.

Area under the curve: 69.43%

Area under the curve: 68.75%

Area under the curve: 71.11%

Area under the curve: 74.28%

Area under the curve: 51.43%

A large differences between the AUC for model IV and V is seen in the above out-
put when evaluating their ROC curves on test sets. The difference is 74.28%−
51.43% = 22.85%. The AUC under the ROC curve for model IV is 74.28%
which is a good indicator that this classifier is the most effective regardless
of the threshold value used. Thus, we conclude that model IV was the best
classifier we were able to find. on another topic, the threshold that optimizes
model IV’s sensitivity and specificity is 0.141433. Model IV’s training sensi-
tivity is 73.31% specificity is 64.03%. Model IV’s estimated test sensitivity is
100 ∗ 199

199+88% = 69.34%, estimated test specificity is 100 ∗ 1193
1193+591 = 66.87%,

and the estimated error rate is 100 ∗ (1− 199+1193
2071 ) = 32.79%. To conclude this

paper, we predict whether or not a male who is fifty years old, has a BMI of
30 kg

m2 , is diabetic, smokes twenty cigarettes per day (on average), has a sys-
tolic blood pressure reading of 150.0 in mm Hg (is hypertensive), has a total
cholesterol reading of 128.0 mg

dL , and has a history of stroke is likely to develop
CHD within the next ten years. Then, estimate model metrics using a different
threshold value. In general, Model IV can be written as

ln(
p̂

1− p̂
) = −7.652 + 0.355X.1 + 0.053X.2 + 0.361X.3 + 0.266X.4

+ 0.003X.5 + 0.713X.6 + 0.021X.7 + 0.047X.8 + 0.014X.9

+ 0.198X.10 + 0.002X.11 + 0.901X.12

in logit form. Plugging in the patient values yields ln( p̂
1−p̂ ) = 0.241 and the

probility of CHD development within ten years is 1
1+e−(0.241) = 0.56 or a 56.0%

chance. Using R, the estimated probability is

> predict(object = Model.IV, newdata = data.frame(X.1 = 1, X.2 = 50, X.3 = 1,X.4 = 0,X.5=30,

+ X.6 = 1,X.7 = 20, X.8 = 1, X.9 = 150,

+ X.10 = 0, X.11 = 128, X.12 = 1),

+ type = "response")
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1

0.5643516

. The probability is much higher than the threshold that optimizes model IV’s
sensitivity and specificity. However, this threshold is only a recommendation. If
we would like to have the model to have a higher sensitivity, we can change the
threshold from 0.141433 to 0.10. The confusion matrix for model IV produced
using the validation set approach and a threshold of 0.10 is found below.

> Model.IV.validation.predictions <- rep(x = 0, times = 2071)

> Model.IV.validation.predictions[Model.IV.validation.probs > 0.10] <-1

> table(Model.IV.validation.predictions, CHD.df.4.test$Risk)

Model.IV.validation.predictions 0 1

0 957 56

1 827 231

>

Under these circumstances, the estimated test sensitivity is 100 ∗ 231
231+56% =

80.49%, the estimated specificity is 100∗ 957
957+827% = 53.64%, and the estimated

overall accuracy is 100 ∗ 957+231
2071 % = 57.36%. This has obviously caused a

trade-off. However, under these circumstances, predictions using this threshold
become less dangerous but also produces significantly more false positive predic-
tions. Nevertheless, we still rely on model IV to classify whether or not patients
in Framingham, Massachusettes are at risk of suffering from CHD within ten
years.
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